Skip to main content
Log in

Plant specific emission pattern of biogenic volatile organic compounds (BVOCs) from common plant species of Central India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, we examined 49 representative plant species of the Achanakmar-Amarkantak Biosphere Reserve (AABR) forest of Central India for emission of a number of biogenic volatile organic compounds (BVOCs). The BVOCs emissions from seven plant species are reported here for the first time. The emission rates of different plant species were ranged from negligible to 80.6 ± 0.82 (μgg−1 h−1). Forty-seven plant species were found to emit isoprene and monoterpenes (23 high emitters, 12 moderate emitters, and 12 low emitters). Dalbergia sissoo showed the maximum total average volatile organic compound (TAVOC) emission rates (80.6 μgg−1 h−1). The percentage composition of monoterpenes was also varied across different plant species. Alpha-pinene (α-pinene) was found as the most dominant monoterpene with about 41.40% of the total monoterpene emission. The highest emission range of α-pinene (7.8 μg g−1 h−1) was observed in Murraya koenigii. Carene was emitted only from two species (i.e., Mangifera indica and Terminalia tomentosa). When the emission rates of present study were compared to previous studies, there were considerable differences even for the same species. The study also reports the emission of BVOCs from Shorea robusta for the first time which is the most dominant plant species of the AABR (covering 60% of the total forest area).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal, R., Dixit, B., Singh, L., & Ojha, B.M. (2010). Composition, structure and floral diversity of forest communities of Achanakmar-Amarkantak Biosphere Reserve: A comparison and conservation implication. Proceedings of the International Forestry and Environment Symposium 2010 of the Department of Forestry and Environmental Science. Colombo: University of Sri Jayewardenepura.

  • Andreae, M. O., & Crutzen, P. J. (1997). Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science, 276(5315), 1052–1058.

    Article  CAS  Google Scholar 

  • Ashworth, K., Boissard, C., Folberth, G., Lathière, J., & Schurgers, G. (2013). Global modelling of volatile organic compound emissions. In Biology, controls and models of tree volatile organic compound emissions. 451–487, Springer Netherlands.

  • Aydin, Y. M., Yaman, B., Koca, H., Dasdemir, O., Kara, M., Altiok, H., Dumanoglu, Y., Bayram, A., Tolunay, D., Odabasi, M., & Elbir, T. (2014). Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species. Science of the Total Environment, 490, 239–253.

    Article  CAS  Google Scholar 

  • Bai, J. H., & Baker, B. (2004). Study on the affecting factors of isoprene emission at grassland, China. Journal of Atmospheric Sciences., 28(5), 783–794.

    CAS  Google Scholar 

  • Bai, J. H., Wang, G. C., Ren, L. X., Baker, B., Zimmerman, P., & Liang, B. S. (2003). The emission flux of volatile organic compounds in the Inner Mongolia grassland. Environmental Science., 24(6), 16–22.

    CAS  Google Scholar 

  • Bai, J. H., Baker, B., Liang, B. S., Greenberg, J., & Guenther, A. (2006). Isoprene and monoterpene emissions from Inner Mongolia grassland. Atmospheric Environment, 40(30), 5753–5758.

    Article  CAS  Google Scholar 

  • Benjamin, M. T., Sudol, M., Bloch, L., & Winer, A. M. (1996). Low emitting urban forests: A taxonomic methodology for assigning isoprene and monoterpene emission rate. Atmospheric Environment, 30, 1437–1452.

    Article  CAS  Google Scholar 

  • Bertin, N., Staudt, M., Hansen, U., Seufert, G., Ciccioli, P., Foster, P., Fugit, J. L., & Torres, L. (1997). Diurnal and seasonal course of monoterpene emissions from Quercus ilex (L.) under natural conditions application of light and temperature algorithms. Atmospheric Environment, 31, 135–144.

    Article  CAS  Google Scholar 

  • Biosphere Reserve Information Series (BRIS). (2010). Volume 2(1–2). Tropical Forest Research Institute (Indian Council of Forestry Research and Education) P.O.RFRC, Mandla Road, Jabalpur-482021.

  • Bracho-Nunez, A., Welter, S., Staudt, M., & Kesselmeier, J. (2011). Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation. Journal of Geophysical Research: Atmospheres, 116(D16).

  • Bracho-Nunez, A., Knothe, N., Welter, S., Staudt, M., Costa, W. R., Liberato, M. A. R., Piedade, M. T. F., & Kesselmeier, J. (2013). Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants. Biogeosciences, 10(9), 5855–5873.

    Article  CAS  Google Scholar 

  • Calfapietra, C., Fares, S., & Loreto, F. (2009). Volatile organic compounds from Italian vegetation and their interaction with ozone. Environmental Pollution, 157(5), 1478–1486.

    Article  CAS  Google Scholar 

  • Centritto, M., Di Bella, C. M., Baraldi, R., Eugenia, B. M., Kemerer, A., Rapparini, F., Oricchio, P., Rebella, C., & Loreto, F. (2008). Monoterpene emissions from three Nothofagus species in Patagonia, Argentina. Journal of Plant Interaction, 3(2), 119–125.

    Article  CAS  Google Scholar 

  • Ciccioli, P., Fabozzi, C., Brancaleoni, E., Cecinato, A., Frattoni, M., Loreto, F., Kesselmeier, J., Schafer, L., Bode, K., Torres, L., & Fugit, J. L. (1997). Use of the isoprene algorithm for predicting the monoterpene emission from the Mediterranean holm oak Quercus ilex L.: Performance and limits of this approach. Journal of Geophysical Research: Atmospheres, 102(D19), 23319–23328.

    Article  CAS  Google Scholar 

  • Curtis, A. J., Helmig, D., Baroch, C., Daly, R., & Davis, S. (2014). Biogenic volatile organic compound emissions from nine tree species used in an urban tree-planting program. Atmospheric Environment, 95, 634–643.

    Article  CAS  Google Scholar 

  • Fares, S., Gentner, D. R., Park, J. H., Ormeno, E., Karlik, J., & Goldstein, A. H. (2011). Biogenic emissions from Citrus species in California. Atmospheric Environment, 45(27), 4557–4568.

    Article  CAS  Google Scholar 

  • Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., & Zimmerman, P. (1992). Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochemical Cycles, 6, 389–430.

    Article  CAS  Google Scholar 

  • Geron, C., Owen, S., Guenther, A., Greenberg, J., Rasmussen, R., Bai, J. H., Li, Q. J., & Baker, B. (2006). Volatile organic compounds from vegetation in southern Yunnan Province, China: Emission rates and some potential regional implications. Atmospheric Environment, 40(10), 1759–1773.

    Article  CAS  Google Scholar 

  • Guenther, A. (1997). Seasonal and spatial variations in natural volatile organic compound emissions. Ecological Applications, 7(1), 34–45.

    Article  Google Scholar 

  • Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., & Fall, R. (1993). Isoprene and monoterpene emission rate variability _ model evaluations and sensitivity analyses. Journal of Geophysical Research: Atmospheres, 98, 12609–12617.

    Article  Google Scholar 

  • Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., & Fall, R. (2000). Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmospheric Environment, 34(12), 2205–2230.

    Article  CAS  Google Scholar 

  • Harley, P., Guenther, A., & Greenberg, J. (2003). Micrometeorological and leaf level\ measurements of isoprene emission from a South African savanna. Journal of Geophysical Research, 108(D13), 4–10

  • He, N. P., Han, X. G., Sun, W., & Pan, Q. M. (2004). Biogenic VOCs emission inventory development of temperate grassland vegetation in Xilin River Basin, Inner Mongolia, China. Journal of Environmental Sciences, 16(6), 1024–1032.

    CAS  Google Scholar 

  • Helmig, D., Daly, R. W., Milford, J., & Guenther, A. (2013). Seasonal trends of biogenic terpene emissions. Chemosphere, 93(1), 35–46.

    Article  CAS  Google Scholar 

  • Holm, J. A., Chambers, J. Q., Collins, W. D., & Higuchi, N. (2014). Forest response to increased disturbance in the Central Amazon and comparison to western Amazonian forests. Biogeosciences, 11(20), 5773–5794.

    Article  Google Scholar 

  • Huang, C., Chen, C. H., Li, L., Cheng, Z., Wang, H. L., Huang, H. Y., Streets, D. G., Wang, Y. J., Zhang, G. F., & Chen, Y. R. (2011). Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China. Atmospheric Chemistry and Physics, 11(9), 4105–4120.

    Article  CAS  Google Scholar 

  • Karl, T., Guenther, A., Turnipseed, A., Tyndall, G., Artaxo, P., & Martin, S. (2009). Rapid formation of isoprene photo-oxidation products observed in Amazonia. Atmospheric Chemistry and Physics, 9(20), 7753–7767.

    Article  CAS  Google Scholar 

  • Karlik, J. F., & Winer, A. M. (2001). Measured isoprene emission rates of plants in California landscapes: Comparison to estimates from taxonomic relationships. Atmospheric Environment, 35(6), 1123–1131.

    Article  CAS  Google Scholar 

  • Kesselmeier, J., & Staudt, M. (1999). Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33(1), 23–88.

    Article  CAS  Google Scholar 

  • Kesselmeier, J., Ciccioli, P., Kuhn, U., Stefani, P., Biesenthal, T., Rottenberger, S., & Kabat, P. (2002). Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Global Biogeochemical Cycles, 16(4), 73-1–73-9.

    Article  Google Scholar 

  • Kim, J. C. (2001). Factors controlling natural VOC emissions in a southeastern US pine forest. Atmospheric Environment, 35(19), 3279–3292.

    Article  CAS  Google Scholar 

  • Kim, J. C., Kim, K. J., Kim, D. S., & Han, J. S. (2005). Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea. Chemosphere, 59(11), 1685–1696.

    Article  CAS  Google Scholar 

  • Klinger, L. F., Li, Q. J., Guenther, A. B., Greenberg, J. P., Baker, B., & Bai, J. H. (2002). Assessment of volatile organic compound emissions from ecosystems of China. Journal of Geophysical Research: Atmospheres, 107(D21), ACH 16-1ACH 16-21.

    Article  Google Scholar 

  • Laothawornkitkul, J., Taylor, J. E., Paul, N. D., & Hewitt, C. N. (2009). Biogenic volatile organic compounds in the earth system. New Phytologist, 183(1), 27–51.

    Article  CAS  Google Scholar 

  • Lim, J. H., Kim, J. C., Kim, K. J., Son, Y. S., Sunwoo, Y., & Han, J. S. (2008). Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia. Chemosphere, 73(4), 470–478.

    Article  CAS  Google Scholar 

  • Llusia, J., Penuelas, J., Sardans, J., Owen, S. M., & Niinemets, U. (2010). Measurement of volatile terpene emissions in 70 dominant vascular plant species in Hawaii: Aliens emit more than natives. Global Ecology Biogeography, 19(6), 863–874.

    Article  Google Scholar 

  • Owen, S., Boissard, C., Street, R. A., Duckham, S. C., Csiky, O., & Hewitt, C. N. (1997). Screening of 18 Mediterranean plant species for volatile organic compound emissions. Atmospheric Environment, 31, 101–117.

    Article  CAS  Google Scholar 

  • Owen, S. M., Boissard, C., & Hewitt, C. N. (2001). Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale. Atmospheric Environment, 35(32), 5393–5409.

    Article  CAS  Google Scholar 

  • Owen, S. M., Harley, P., Guenther, A., & Hewitt, C. N. (2002). Light dependency of VOC emissions from selected Mediterranean plant species. Atmospheric Environment, 36(19), 3147–3159.

    Article  CAS  Google Scholar 

  • Padhy, P. K., & Varshney, C. K. (2005). Emission of volatile organic compounds (VOC) from tropical plant species in India. Chemosphere, 59(11), 1643–1653.

    Article  CAS  Google Scholar 

  • Penuelas, J., & Llusia, J. (1999). Seasonal emission of monoterpenes by the Mediterranean tree Quercus ilex in field conditions: Relations with photosynthetic rates, temperature and volatility. Physiologia Plantarum, 105(4), 641–647.

    Article  CAS  Google Scholar 

  • Penuelas, J., & Llusia, J. (2001). Seasonal patterns of non-terpenoid C 6–C 10 VOC emission from seven Mediterranean woody species. Chemosphere, 45(3), 237–244.

    Article  CAS  Google Scholar 

  • Penuelas, J., & Staudt, M. (2010). BVOCs and global change. Trends in Plant Science, 15(3), 133–144.

    Article  CAS  Google Scholar 

  • Poschl, U., Martin, S. T., Sinha, B., Chen, Q., Guenther, S. S., Huffman, J. A., Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., & Jimenez, J. L. (2010). Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science, 329(5998), 1513–1516.

    Article  CAS  Google Scholar 

  • Roychoudhury, N., Sharma, R., & Mishra, R.K. (2016). Ethnobotanical uses of plant species in Achanakmar-Amarkantak Biosphere Reserve. Van Sangyan, (3) No. 10.

  • Sahu, P. K., & Singh, J. S. (2008). Structural attributes of lantana-invaded forest plots in Achanakmar-Amarkantak Biosphere Reserve, Central India. Current Science, 95(4), 494–500.

    Google Scholar 

  • Sardans, J., Llusia, J., Owen, S. M., Niinemets, U., & Penuelas, J. (2015). Screening study of leaf terpene concentration of 75 Borneo rainforest plant species: Relationships with leaf elemental concentrations and morphology. Records of Natural Products, 9(1), 19.

    Google Scholar 

  • Seufert, G., Bartzis, J., Bomboi, T., Ciccioli, P., Cieslik, S., Dlugi, R., Dlugi, R., Foster, P., Hewitt, C. N., Kesselmeier, J., Kotzias, D., & Lenz, R. (1997). An overview of the Castelporziano experiments. Atmospheric Environment, 31, 5–17.

    Article  CAS  Google Scholar 

  • Singh, A. P., Varshney, C. K., & Singh, U. K. (2007). Seasonal variations in isoprene emission from tropical deciduous tree species. Environmental Monitoring and Assessment, 131(1–3), 231–235.

    Article  CAS  Google Scholar 

  • Singh, R., Singh, A. P., Kumar, A., Singh, M. P., & Varshney, C. K. (2008). Emission of isoprene from common Indian plant species and its implications for regional air quality. Environmental Monitoring and Assessment, 144, 43–51.

    Article  CAS  Google Scholar 

  • Singh, K.P., Shukla, A.N., & Singh, J.S. (2010). Floristic diversity and taxonomic profile of the vegetation of Achanakmar-Amarkantak Biosphere Reserve, Central India. Journal of the Bombay Natural History Society, 107(2),

  • Singh, A. P., Singh, R., Mina, U., Singh, M. P., & Varshney, C. K. (2011). Emissions of monoterpene from tropical Indian plant species and assessment of VOC emission from the forest of Haryana state. Atmospheric Pollution Research, 2(1), 72–79.

    Article  CAS  Google Scholar 

  • Singh, R., Singh, M. P., & Singh, A. P. (2014). Ozone forming potential of tropical plant species of the Vidarbha region of Maharashtra state of India. Urban Forestry and Urban Greening, 13(4), 814–820.

    Article  Google Scholar 

  • Situ, S. P., Wang, X. M., Guenther, A., Chai, Z. W., & Deng, R. R. (2009). Typical summer time isoprene emission from vegetation in the Pearl River Delta region. China. Acta Sci. Circumstantiate, 29(4), 822–829.

    CAS  Google Scholar 

  • Situ, S., Guenther, A., Wang, X., Jiang, X., Turnipseed, A., Wu, Z., & Bai, J. (2013). Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River delta region, China. Atmospheric Chemistry and Physics, 13(23), 11803–11817.

    Article  Google Scholar 

  • Street, R. A., Owen, S., Duckham, S. C., Boissard, C., & Hewitt, C. N. (1997). Effect of habitat and age on variations in volatile organic compound (VOC) emissions from Quercus ilex and Pinus pinea. Atmospheric Environment, 31, 89–100.

    Article  CAS  Google Scholar 

  • Tambunan, P., Baba, S., Kuniyoshi, A., Iwasaki, H., Nakamura, T., Yamasaki, H., & Oku, H. (2006). Isoprene emission from tropical trees in Okinawa Island, Japan. Chemosphere, 65(11), 2138–2144.

    Article  CAS  Google Scholar 

  • Tani, A., & Kawawata, Y. (2008). Isoprene emission from the major native Quercus spp. in Japan. Atmospheric Environment, 42(2008), 4540–4550.

    Article  CAS  Google Scholar 

  • Tani, A., Nozoe, S., Aoki, M., & Hewitt, C. N. (2002). Monoterpene fluxes measured above a Japanese red pine forest at Oshiba plateau, Japan. Atmospheric Environment, 36(21), 3391–3402.

    Article  CAS  Google Scholar 

  • Tsui, J. K. Y., Guenther, A., Yip, W. K., & Chen, F. (2009). A biogenic volatile organic compound emission inventory for Hong Kong. Atmospheric Environment, 43, 6442–6448.

    Article  CAS  Google Scholar 

  • Varshney, C.K., & Singh, A.P. (2003). Isoprene emission from Indian trees. Journal of Geophysical Research: Atmospheres,108 (D24).

    Article  Google Scholar 

  • Velentini, R., Greco, S., Seufert, G., Bertin, N., Ciccioli, P., Cecinato, A., Brancaleoni, E., & Frattoni, M. (1997). Fluxes of biogenic VOC from Mediterranean vegetation by trap enrichment relaxed eddy accumulation. Atmospheric Environment, 31, 229–238.

    Article  Google Scholar 

  • Wang, Z. H., Bai, Y. H., & Zhang, S. Y. (2003). A biogenic volatile organic compounds emission inventory for Beijing. Atmospheric Environment, 37, 3771–3782.

    Article  CAS  Google Scholar 

  • Wang, X., Mauzerall, D. L., Hu, Y., Russell, A. G., Larson, E. D., Woo, J., Streets, D. G., & Guenther, A. (2005). A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020. Atmospheric Environment, 39(32), 5917–5933.

    Article  CAS  Google Scholar 

  • Wang, X., Situ, S., Guenther, A., Chen, F., Wu, Z., Xia, B., & Wang, T. (2011). Spatiotemporal variability of biogenic terpenoid emissions in Pearl River Delta, China, with high-resolution land-cover and meteorological data. Tellus B, 63(2), 241–254. https://doi.org/10.1111/j.1600e0889.2010.00523.x.

  • Wilmking, M., Juday, G. P., Barber, V. A., & Zald, H. S. J. (2004). Recent climate warming forces contrasting growth responses of white spruce at tree line in Alaska through temperature thresholds. Global Change Biology, 10, 1724–1736.

    Article  Google Scholar 

  • Yaman, B., Aydin, Y. M., Koca, H., Dasdemir, O., Kara, M., Altiok, H., Dumanoglu, Y., Bayram, A., Tolunay, D., Odabasi, M., & Elbir, T. (2015). Biogenic volatile organic compound (BVOC) emissions from various endemic tree species in Turkey. Aerosol and Air Quality Research, 15, 341–356.

    Article  CAS  Google Scholar 

  • Yang, D. J., Pan, N. M., Bai, Y. H., Li, J. L., Tang, L., Deng, L. X., & Su, X. (2001). A study on hydrocarbon compounds emitted from natural forest sources in Pearl River Delta. Guangzhou. Environmental Science, 16(3), 34–38.

    Google Scholar 

  • Yassaa, N., Custer, T., Song, W., Pech, F., Kesselmeier, J., & Williams, J. (2010). Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME. Atmospheric Measurement Techniques, 3, 1615–1627.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Botany, School of studies in Life Science, Guru Ghasidas Vishwavidyalaya, Bilaspur (a central University), for the Laboratory facilities. The constructive comments provided by the editor and three anonymous reviewers immensely helped in improving the final version of manuscript.

Funding

This study was financially supported by the Department of Science and Technology (DST), Government of India, New Delhi, (Ref No.: SB/YS/LS-277/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, T.G., Gajbhiye, T. & Pandey, S.K. Plant specific emission pattern of biogenic volatile organic compounds (BVOCs) from common plant species of Central India. Environ Monit Assess 190, 631 (2018). https://doi.org/10.1007/s10661-018-7015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7015-6

Keywords

Navigation