Skip to main content
Log in

Ascospore discharge by Fusarium graminearum as affected by temperature and relative humidity

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium graminearum is the most important species causing Fusarium head blight of small-grain cereals. Ascospore discharge from F. graminearum perithecia was studied under controlled conditions, i.e., between 5 and 40 °C in a saturated atmosphere and between 44.5 and 100 % relative humidity at 20 °C. Ascospores were collected on microscope slides placed directly below maize stalk plugs bearing mature perithecia, and were enumerated daily for 5 days. Discharge was detected at all temperatures and relative humidities on the first day; no discharge was detected for temperatures >30 °C or relative humidities ≤76 % after the first day. Ascospore discharge was highest between 15 and 25 °C (optimum at 21 °C) and at 100 % relative humidity. Some ascospores were discharged at any of the tested temperatures and relative humidities. A Bete equation described ascospore discharge as a function of temperature (R2 = 0.99), and an exponential equation described ascospore discharge as a function of relative humidity (R2 = 0.97).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Analytis, S. (1980). Obtaining of sub-models for modeling the entire life cycle of a pathogen. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 87(7), 371–382.

    Google Scholar 

  • Ayers, J. E., Pennypacker, S. P., Nelson, P. E., & Pennypacker, B. W. (1975). Environmental factors associated with airborne ascospores of Gibberella zeae in corn and wheat fields. Phytopathology, 65, 835.

    Article  Google Scholar 

  • Burnham, K. P. & Anderson, D. R. (2002). Model selection and multimodel inference. A practical information - theoretic approach. US: Springer.

    Google Scholar 

  • Cavinder, B. & Trail, F. (2012). Role of Fig1, a component of the low-affinity calcium uptake system, in growth and sexual development of filamentous fungi. Eukaryotic Cell, 11(8), 978–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Ponte, E. M., Fernandes, J. M. C., & Pierobom, C. R. (2005). Factors affecting density of airborne Gibberella zeae inoculum. Fitopatologia Brasileira, 30(1), 55–60.

    Article  Google Scholar 

  • Dhingra, O. D. & Sinclair, J. B. (1995). Basic plant pathology methods. Boca Raton: CRC.

    Google Scholar 

  • Dufault, N. S., De Wolf, E. D., Lipps, P. E., & Madden, L. V. (2006). Role of temperature and moisture in the production and maturation of Gibberella zeae perithecia. Plant Disease, 90(5), 637–644.

    Article  Google Scholar 

  • Fernando, W. G. D., Miller, J. D., Seaman, W. L., Seifert, K., & Paulitz, T. C. (2000). Daily and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled over wheat plots. Canadian Journal of Botany, 78(4), 497–505.

    Article  Google Scholar 

  • Francl, L. J. (1998). Development of Fusarium head blight in relation to environment and inoculum, In 1998 National Fusarium Head Blight Forum (pp. 1–3). Michigan, USA: East Lansing.

    Google Scholar 

  • Francl, L., Dakota, N., Shaner, G., Lafayette, W., Bergstrom, G. C., Gilbert, J., et al. (1999). Daily inoculum levels of Gibberella zeae on wheat spikes. Plant Disease, 83(7), 662–666.

    Article  Google Scholar 

  • Gourdain, E., & Rossi, V. (2011). A model to predict the risk of infection by Gibberella zeae ascospores. In 7th Canadian workshop on fusarium head blight, Winnipeg, Canada, 27–30 November 2011 (p. 44).

  • Guenther, J. C. & Trail, F. (2005). The development and differentiation of Gibberella zeae (anamorph: Fusarium graminearum) during colonization of wheat. Mycologia, 97(1), 229–237.

    Article  PubMed  Google Scholar 

  • Hallen, H. E. & Trail, F. (2008). The L-type calcium ion channel Cch1 affects ascospore discharge and mycelial growth in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Eukaryotic Cell, 7(2), 415–424.

    Article  CAS  PubMed  Google Scholar 

  • Hosaini, Y., Homaee, M., Karimian, N. A., & Saadat, S. (2009). Modeling vegetative stage response of canola (Brassica napus L.) to combined salinity and boron stresses. International Journal of Plant Production, 3, 91–104.

    Google Scholar 

  • Inch, S., Fernando, D., Gilbert, J., & Tekauz, A. (2000). Relationship between environmental variables and spore release by Gibberella zeae and Fusarium graminearum. In 6th European fusarium seminar & third cost 835 workshop of agriculturally important toxigenic fungi (p. 29).

  • Inch, S., Fernando, W. G. D., & Gilbert, J. (2005). Seasonal and daily variation in the airborne concentration of Gibberella zeae (Schw.) Petch spores in Manitoba. Canadian Journal of Plant Pathology, 27, 357–363.

    Article  Google Scholar 

  • Lee, J., Park, C., Kim, J.-C., Kim, J.-E., & Lee, Y.-W. (2010). Identification and functional characterization of genes involved in the sexual reproduction of the ascomycete fungus Gibberella zeae. Biochemical and Biophysical Research Communications, 401(1), 48–52.

    Article  CAS  PubMed  Google Scholar 

  • Leslie, J. F., & Summerell, B.. (2006). The fusarium laboratory manual. (J. F. Leslie & B. A. Summerell, Eds.). Ames: Blackwell Publishing.

  • Loague, K. & Green, R. (1991). Statistical and graphical methods for evaluating solute transport models: overview and application. Journal of Contaminant Hydrology, 7(1), 51–73.

    Article  CAS  Google Scholar 

  • Madden, L. V., Hughes, G., & van der Bosch, F. (2007). The study of plant disease epidemics. St. Paul, MN: APS-Press.

    Google Scholar 

  • Manstretta, V. & Rossi, V. (2015). Modelling the effect of weather on moisture fluctuations in maize stalk residues, an important inoculum source for plant diseases. Agricultural and Forest Meteorology, 207, 83–93.

    Article  Google Scholar 

  • Manstretta, V. & Rossi, V. (2016). Effects of temperature and moisture on development of Fusarium graminearum perithecia in maize stalk residues. Applied and Environmental Microbiology, 82(1), 184–191.

    Article  CAS  Google Scholar 

  • Markell, S. G. & Francl, L. J. (2003). Fusarium head blight inoculum: species prevalence and Gibberella zeae spore type. Plant Disease, 87(7), 814–820.

    Article  Google Scholar 

  • McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., et al. (2012). A unified effort to fight an enemy of wheat and barley: fusarium head blight. Plant Disease, 96(12), 1712–1728.

    Article  Google Scholar 

  • Min, K., Lee, J., Kim, J. C., Kim, S. G., Kim, Y. H., Vogel, S., et al. (2010). A novel gene, ROA, is required for normal morphogenesis and discharge of ascospores in Gibberella zeae. Eukaryotic Cell, 9(10), 1495–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitter, V., Francl, L. J., Ali, S., Simpfendorfer, S., & Chakraborty, S. (2006). Ascosporic and conidial inoculum of Gibberella zeae play different roles in Fusarium head blight and crown rot of wheat in Australia and the USA. Australasian Plant Pathology, 35(4), 441–452.

    Article  Google Scholar 

  • Panisson, E., Reis, E. M., & Boller, W. (2002). Quantificacao de propagulos de Gibberella zeae no ar infeccao de anteras em trigo. Fitopatologia Brasileira, 27(5), 489–494.

    Article  Google Scholar 

  • Paul, P. A., El-Allaf, S. M., Lipps, P. E., & Madden, L. V. (2004). Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology, 94(12), 1342–1349.

    Article  CAS  PubMed  Google Scholar 

  • Paulitz, T. C. (1996). Diurnal release of ascospores by Gibberella zeae in inoculated wheat plots. Plant Disease, 80(6), 674–678.

    Article  Google Scholar 

  • Paulitz, T. & Seaman, W. L. (1994). Temporal analysis of ascospore release of Gibberella zeae in artificially inoculated field plots of wheat. Phytopathology, 84(10), 1070–1071.

    Google Scholar 

  • Prussin, A. J., Qing, L., Malla, R., Ross, S. D., & Schmale, D. G. I. (2014). Monitoring the long-distance transport of Fusarium graminearum from field-scale sources of inoculum. Plant Disease, 98(4), 504–511.

    Article  CAS  Google Scholar 

  • Reis, E. M. (1988). Quantificação de propágulos de Gibberella zeae no ar através de armadilhas de esporos. Fitopatologia Brasileira, 13, 324–327.

    Google Scholar 

  • Reis, E. M. (1990). Effects of rain and relative humidity on the release of ascospores and on the infection of wheat heads by Gibberella zeae. Fitopatologia Brasileira, 15, 339–343.

    Google Scholar 

  • Schmale, D. G., & Bergstrom, G. C. (2004). Airborne propagules of Gibberella zeae: techinques for monitoring release and viability. Phytopathology, 94(6 (supplement)), S93.

  • Schmale, D. G., Arntsen, Q. A., & Bergstrom, G. C. (2005a). The forcible discharge distance of ascospores of Gibberella zeae. Canadian Journal of Plant Pathology, 27(3), 376–382.

    Article  Google Scholar 

  • Schmale, D. G., Shah, D. A., & Bergstrom, G. C. (2005b). Spatial patterns of viable spore deposition of the corn ear rot pathogen, Gibberella zeae, in first- year corn fields. Canadian Journal of Plant Pathology, 27, 225–233.

    Article  Google Scholar 

  • Schmale, D. G., Shields, E. J., & Bergstrom, G. C. (2006). Night-time spore deposition of the fusarium head blight pathogen, Gibberella zeae, in rotational wheat fields. Canadian Journal of Plant Pathology, 28, 100–108.

    Article  Google Scholar 

  • Son, H., Lee, J., & Lee, Y. W. (2013). A novel gene, GEA1, is required for ascus cell-wall development in the ascomycete fungus Fusarium graminearum. Microbiology (United Kingdom), 159, 1077–1085.

    CAS  Google Scholar 

  • Trail, F. (2007). Fungal cannons: explosive spore discharge in the Ascomycota. FEMS Microbiology Letters, 276(1), 12–18.

    Article  CAS  PubMed  Google Scholar 

  • Trail, F. (2009). For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiology, 149(1), 103–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trail, F. & Common, R. (2000). Perithecial development by Gibberella zeae: a light microscopy study. Mycologia, 92(1), 130–138.

    Article  Google Scholar 

  • Trail, F. & Seminara, A. (2014). The mechanism of ascus firing - merging biophysical and mycological viewpoints. Fungal Biology Reviews, 28(2–3), 70–76.

    Article  Google Scholar 

  • Trail, F., Gadoury, D., & Loranger, R. (1998). Environmental parameters of ascospore discharge in Gibberella zeae, In 1998 National Fusarium Head Blight Forum (pp. 11–13). Michigan, USA: East Lansing.

    Google Scholar 

  • Trail, F., Xu, H., Loranger, R., & Gadoury, D. (2002). Physiological and environmental aspects of ascospore discharge in Gibberella zeae (anamorph Fusarium graminearum). Mycologia, 94(2), 181–189.

    Article  PubMed  Google Scholar 

  • Trail, F., Gaffoor, I., & Vogel, S. (2005). Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fusarium graminearum). Fungal Genetics and Biology: FG & B, 42(6), 528–533.

    Article  Google Scholar 

  • Tschanz, A. T., Horst, R. K., & Nelson, P. E. (1975). Ecological aspects of ascospore discharge in Gibberella zeae. Phytopathology, 65(5), 597–599.

    Article  Google Scholar 

  • Tschanz, A. T., Horst, R. K., & Nelson, P. E. (1976). The effect of environment on sexual reproduction of Gibberella zeae. Mycologia, 68, 327–340.

    Article  Google Scholar 

  • Walter, S., Nicholson, P., & Doohan, F. M. (2010). Action and reaction of host and pathogen during Fusarium head blight disease. New Phytologist, 185(1), 54–66.

    Article  CAS  PubMed  Google Scholar 

  • Ye, H. Z. (1980). On the biology of the perfect stage of Fusarium graminearum Schw. Acta Phytophylacica Sinica, 7(1), 35–42.

    Google Scholar 

Download references

Acknowledgments

The first author carried out this work within the Doctoral School on the Agro-Food System (Agrisystem) of the Università Cattolica del Sacro Cuore (Italy). We thank Matthias Herrmann for providing the fungal strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Rossi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animals rights

The research do not involve Human Participants nor Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manstretta, V., Rossi, V. Ascospore discharge by Fusarium graminearum as affected by temperature and relative humidity. Eur J Plant Pathol 146, 191–197 (2016). https://doi.org/10.1007/s10658-016-0892-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0892-z

Keywords

Navigation