Skip to main content
Log in

A new genomovar of Pseudomonas cichorii, a causal agent of tomato pith necrosis

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Recent taxonomic advances, based on biochemical and genotypic processes demonstrate that the plant pathogenic species Pseudomonas cichorii consists of a cluster of closely related genomic groups. Prior to this study, three morphotype groups had been described (C1-C3), all sharing various phenotypic and biochemical characters but partially differing in their DNA content. All entities of the complex could cause disease among a variety of hosts, including lettuce, celery, chrysanthemum and others. In this study, we present the biochemical and molecular characterization of P. cichorii isolates as the causal agent of pith necrosis of tomato plants. A detailed characterization of the genetic variability among strains belonging to P. cichorii was achieved using BOX-PCR and Multi Locus Sequence Analysis utilizing three housekeeping genes (gyrB, rpoD, rpoB). In addition, a number of biochemical and physiological tests were also used for the identification of the tomato P. cichorii isolates. To our knowledge, this is the first complete biochemical, molecular and phylogenetic study of P. cichorii strains isolated from tomato plants affected by pith necrosis disease. Our findings demonstrate the emergence of a new genomovar of P. cichorii, yet another indication for the genetic heterogeneity of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ait Tayeb, L., Ageron, E., Grimont, F., & Grimont, P. A. (2005). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Research in Microbiology, 156, 763–773.

    Article  PubMed  CAS  Google Scholar 

  • Alippi, A., Dal Bo, E., Ronco, L., López, M., López, A., & Aguilar, O. (2003). Pseudomonas populations causing pith necrosis of tomato and pepper in Argentina are highly diverse. Plant Pathology, 52, 287–302.

    Article  CAS  Google Scholar 

  • Alivizatos, A. S. (1984). Etiology of tomato pith necrosis in Greece. Paper presented at the Proceedings of the 2nd working group Pseudomonas syringae pathovar organized by the Hellenic Phytopathological Society, Sounion, Greece.

  • Alivizatos, A. S. (1985). Bacterial wilt of tomato in Greece caused by Erwinia chrysanthemi. Plant Pathology, 34, 638–639.

    Article  Google Scholar 

  • Alivizatos, A. S. (1986). Tomato pith necrosis caused by Pseudomonas viridiflava. Annales de l’Institut phytopathologique Benaki, 15, 41–47.

    Google Scholar 

  • Braun-Kiewnick, A., & Sands, D. C. (2001). Pseudomonas. In N. W. Schaad, J. B. Jones, & W. Chun (Eds.), Laboratory guide for identification of plant pathogenic bacteria (pp. 84–120). APS Press.

  • Buell, C. R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I. T., Gwinn, M. L., et al. (2003). The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America 100, 10181–10186.

  • Buonaurio, R., Karofilakis, A., & Scortichini, M. (1993). Occurrence of Pseudomonas corrugate Roberts et Scarlett on tomato plants in Crete. Phytopathologia Mediterranea, 32, 245–246.

    Google Scholar 

  • Chase, A. R. (1987). Leaf and petiole rot of Ficus lyrata cv. Compacta caused by Pseudomonas cichorii. Plant Pathology, 36, 219–221.

    Article  Google Scholar 

  • Cladera, A. M., Sepulveda-Torres Ldel, C., Valens-Vadell, M., Meyer, J. M., Lalucat, J., & Garcia-Valdes, E. (2006). A detailed phenotypic and genotypic description of Pseudomonas strain OX1. Systematic and Applied Microbiology, 29, 422–430.

  • Cottyn, B., Heylen, K., Heyrman, J., Vanhouteghem, K., Pauwelyn, E., Bleyaert, P., Van Vaerenbergh, J., Höfte, M., De Vos, P., & Maes, M. (2009). Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders. Systematic and Applied Microbiology, 32, 211–225.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, S. L., Fry, J. C., & Dancer, B. N. (2002). A comparative evaluation of five typing techniques for determining the diversity of fluorescent pseudomonads. Journal of Microbiological Methods, 50, 9–22.

    Article  PubMed  CAS  Google Scholar 

  • De Vos, D., Bouton, C., Sarniguet, A., De Vos, P., Vauterin, M., & Cornelis, P. (1998). Sequence diversity of the oprI gene, coding for major outer membrane lipoprotein I, among rRNA group I pseudomonads. Journal of Bacteriology, 180, 6551–6556.

    PubMed  Google Scholar 

  • Feil, H., Feil, W. S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., et al. (2005). Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America 102, 11064–11069.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence-limits on phylogenies - an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Garibaldi, A., Bertetti, D., Scortichini, M., & Gullino, M. L. (2005). First report of bacterial leaf spot caused by Pseudomonas cichorii on Phlox paniculata in Italy. Plant Disease, 89, 912.

    Article  Google Scholar 

  • Goumas, D. E., Malathrakis, N. E., & Chatzaki, A. K. (1999). Characterization of Pseudomonas viridiflava associated with a new symptom on tomato fruit. European Journal of Plant Pathology, 105, 927–932.

    Article  Google Scholar 

  • Joardar, V., Lindeberg, M., Jackson, R. W., Selengut, J., Dodson, R., Brinkac, L. M., et al. (2005). Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. Journal of Bacteriology, 187, 6488–6498.

    Google Scholar 

  • Jones, J. B., & Engelhard, A. W. (1983). Outbreak of a stem necrosis on chrysanthemum incited by Pseudomonas cichorii in Florida. Plant Disease, 67, 431–433.

    Article  Google Scholar 

  • King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanine and fluorescin. Journal of Laboratory and Clinical Medicine, 44, 301–307.

    PubMed  CAS  Google Scholar 

  • Lelliott, R. A., Billing, E., & Hayward, A. C. (1966). A determinative scheme for the fluorescent plant pathogenic Pseudomonads. Journal of Applied Microbiology, 29, 470–489.

    Article  CAS  Google Scholar 

  • Liu, W. T., Marsh, T. L., Cheng, H., & Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 63, 4516–4522.

    PubMed  CAS  Google Scholar 

  • Louws, F. J., Fulbright, D. W., Stephens, C. T., & de Bruijn, F. J. (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, 60, 2286–2295.

    PubMed  CAS  Google Scholar 

  • Malathrakis, N. E., & Goumas, D. E. (1987). Bacterial soft rot of tomato in plastic greenhouses in Crete. Annals of Applied Biology, 111, 115–123.

    Article  Google Scholar 

  • Martin, B., Humbert, O., Camara, M., Guenzi, E., Walker, J., Mitchell, T., Andrew, P., Prudhomme, M., Alloing, G., Hakenbeck, R., et al. (1992). A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Research, 20, 3479–3483.

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi, D. V., Peever, T. L., Mavrodi, O. V., Parejko, J. A., Raaijmakers, J. M., Lemanceau, P., et al. (2010). Diversity and evolution of the phenazine biosynthesis pathway. Applied and Environmental Microbiology 76, 866–879.

    Google Scholar 

  • Meyer, J. B., Frapolli, M., Keel, C., & Maurhofer, M. (2011). Pyrroloquinoline quinone biosynthesis gene pqqC, a novel molecular marker for studying the phylogeny and diversity of phosphate-solubilizing pseudomonads. Applied and Environmental Microbiology, 77, 7345–7354.

    Google Scholar 

  • Mirik, M., Aysan, Y., & Sahin, F. (2011). Characterization of Pseudomonas cichorii isolated from different hosts in Turkey. International Journal of Agriculture and Biology, 13, 203–209.

    Google Scholar 

  • Mollet, C., Drancourt, M., & Raoult, D. (1997). rpoB sequence analysis as a novel basis for bacterial identification. Molecular Microbiology, 26, 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  • Mulet, M., Bennasar, A., Lalucat, J., & Garcia-Valdes, E. (2009). An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Molecular and Cellular Probes, 23, 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Mulet, M., Lalucat, J., & García-Valdés, E. (2010). DNA sequence-based analysis of the Pseudomonas species. Environmental Microbiology, 12, 1513–1530.

    PubMed  CAS  Google Scholar 

  • Murillo, J., Bardaji, L., Navarro de la Fuente, L., Fuhrer, M. E., Aguilera, S., & Alvarez-Morales, A. (2011). Variation in conservation of the cluster for biosynthesis of the phytotoxin phaseolotoxin in Pseudomonas syringae suggests at least two events of horizontal acquisition. Research in Microbiology, 162, 253–261.

    Google Scholar 

  • Nameth, S. T., Daughtrey, M. L., Moorman, G. W., & Sulzinski, M. A. (1999). Bacterial blight of Geranium: a history of diagnostic challenges. Plant Disease, 83, 204–212.

    Article  Google Scholar 

  • Palacio-Bielsa, A., Cambra, M. A., & Lopez, M. M. (2009). PCR detection and identification of plant-pathogenic bacteria: updated review of protocols (1989–2007). Journal of Plant Pathology, 91, 249–297.

    CAS  Google Scholar 

  • Palleroni, N. J. (1984). Pseudomonads. In N. R. Krieg (Ed.), Bergey’s manual of systematic bacteriology (pp. 141–199). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Parkinson, N., Bryant, R., Bew, J., & Elphinstone, J. (2011). Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus. Plant Pathology, 60, 338–344.

    Article  CAS  Google Scholar 

  • Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S., Mavrodi, D. V., et al. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 23, 873–878.

  • Pentari, M. G., Mpalantinaki, E. E., Sarris, P. F., Trantas, E. A., Ververidis, F. N., & Goumas , D. E. (2012). Characterization of bacterial isolates from pith necrosis disease of tomato. Paper presented at the 16th conference national conference organized by the Hellenic Phytopathological Society, Thessaloniki, Greece.

  • Pernezny, K., Datnoff, L., & Sommerfeld, M. L. (1994). Brown stem of celery caused by Pseudomonas cichorii. Plant Disease, 78, 917–919.

    Article  Google Scholar 

  • Piening, L. J., & MacPherson, D. J. (1985). Stem melanosis, a disease of spring wheat caused by Pseudomonas cichorii. Canadian Journal of Plant Pathology, 7, 168–172.

    Article  Google Scholar 

  • Rumbou, A., & Gessler, C. (2006). Particular structure of Plasmopara viticola populations evolved under Greek island conditions. Phytopathology, 96, 501–509.

    Article  PubMed  Google Scholar 

  • Santos, S. R., & Ochman, H. (2004). Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environmental Microbiology, 6, 754–759.

    Article  PubMed  CAS  Google Scholar 

  • Sarris, P., Abdelhalim, M., Kitner, M., Skandalis, N., Panopoulos, N., Doulis, A., & Lebeda, A. (2009). Molecular polymorphisms between populations of Pseudoperonospora cubensis from Greece and the Czech Republic and the phytopathological and phylogenetic implications. Plant Pathology, 58, 933–943.

    Article  CAS  Google Scholar 

  • Sarris, P. F., Karri, I. V., Goumas, D. E. (2010). First report of Pseudomonas syringae pv. alisalensis causing bacterial blight of arugula (Eruca vesicaria subsp. sativa) in Greece. New Disease Reports 22.

  • Sarris, P. F., Trantas, E. A., Mpalantinaki, E., Ververidis, F., & Goumas, D. E. (2012). Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level. PLoS ONE, 7, e36090.

    Article  PubMed  CAS  Google Scholar 

  • Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy: The principles and practice of numerical classification. San Francisco: W. H Freeman and Company.

    Google Scholar 

  • Sokal, R. R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationships. The University of Kansas science bulletin, 38, 1409–1438.

    Google Scholar 

  • Soler, L., Yáñez, M. A., Chacon, M. R., Aguilera-Arreola, M. G., Catalán, V., Figueras, M. J., & Martínez-Murcia, A. J. (2004). Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. International Journal of Systematic and Evolutionary Microbiology, 54, 1511–1519.

    Article  PubMed  CAS  Google Scholar 

  • Stapp, C. (1928). Schizomycetes (Spaltpilze oder Bakterien). In P. Sorauer (Ed.), Handbuch der Pflanzenkrankheiten (pp. 1–295). Berlin: Paul Parey.

    Google Scholar 

  • Stead, D. E., Simpkins, S. A., Weller, S. A., Hennessy, J., Aspin, A., Stanford, H., Smith, N. C., & Elphinstone, J. G. (2003). Classification and identification of plant pathogenic Pseudomonas species by REP-PCR derived genetic fingerprints. In N. S. Iacobellis, A. Collmer, S. W. Hutcheson, et al. (Eds.), Pseudomonas syringae and related pathogens: Biology and genetic (pp. 411–421). Dordrechts: Kluwer Academic Publishers.

    Google Scholar 

  • Swingle, D. B. (1925). Center rot of French endive or wilt of chicory (Cichorium intybus L.). Phytopathology, 15, 730.

    Google Scholar 

  • Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101, 11030–11035.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal-W - Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Trantas, E. A., Sarris, P. F., Pentari, M. G., Mpalantinaki, E. E., Ververidis, F. N., Goumas, D. E. (2012). Pseudomonas cichorii the causal agent of tomato pith necrosis in Crete. Paper presented at the 16th conference national conference organized by the Hellenic Phytopathological Society, Thessaloniki, Greece.

  • Vaneechoutte, M., De Beenhouwer, H., Claeys, G., Verschraegen, G., De Rouck, A., Paepe, N., Elaichouni, A., & Portaels, F. (1993). Identification of Mycobacterium species by using amplified ribosomal DNA restriction analysis. Journal of Clinical Microbiology, 31, 2061–2065.

    PubMed  CAS  Google Scholar 

  • Wilkie, P., & Dye, D. W. (1974). Pseudomonas cichorii causing tomato and celery diseases in New Zealand. New Zealand Journal of Agricultural Research, 17, 123–130.

    Article  Google Scholar 

  • Yamamoto, S., Bouvet, P. J. M., & Harayama, S. (1999). Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization. International Journal of Systematic Bacteriology, 49, 87–95.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, S., Kasai, H., Arnold, D. L., Jackson, R. W., Vivian, A., & Harayama, S. (2000). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology-Uk, 146, 2385–2394.

    CAS  Google Scholar 

  • Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In V. Bryson & H. J. Vogel (Eds.), Evolving genes and proteins (pp. 97–166). New York: Academic.

    Google Scholar 

Download references

Acknowledgments

This research was implemented through the Operational Program “Education and Lifelong Learning” and is co-financed by the European Union (European Social Fund) and Greek national funds (awarded to F.V and D.G) and partially by the Education and Research Committee, Technological Educational Institute of Crete (Research Actions of Phytopathology lab, D.G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil A. Trantas.

Additional information

Emmanouil A. Trantas and Panagiotis F. Sarris contributed equally in this article

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 5.14 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trantas, E.A., Sarris, P.F., Mpalantinaki, E.E. et al. A new genomovar of Pseudomonas cichorii, a causal agent of tomato pith necrosis. Eur J Plant Pathol 137, 477–493 (2013). https://doi.org/10.1007/s10658-013-0258-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0258-8

Keywords

Navigation