Skip to main content
Log in

Variability in the sensitivity of biotrophic grapevine pathogens (Erysiphe necator and Plasmopara viticola) to acibenzolar-S methyl and two phosphonates

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The antifungal properties of two phosphonates (fosetyl-Al and a fertilizer) and acibenzolar-S-methyl (ASM) were evaluated to assess their potential for protecting grapevine leaves against grapevine mildews (Plasmopara viticola and Erysiphe necator), and to determine their effects on the development of various mildew isolates, taking into account the inter- and intra-species variability of the pathogens. The phosphonates directly and significantly inhibited the growth of these pathogens. By contrast, ASM had no direct effect on spore production and growth of P. viticola and of E. necator at 1.9 mM. Applied before inoculation, the mean EC50 of ASM was 0.50 ± 0.04 mM and 1.00 ± 0.07 mM for downy and powdery mildew isolates, respectively. The EC50 of the fosetyl-aluminium (FOS) was 0.50 ± 0.02 mM for downy mildew and the EC50 for powdery mildew varied depending on the genetic group under consideration (0.89 ± 0.32 mM for group B 3.30 ± 0.46 mM for group A, respectively). The EC50 of the potassium phosphonate fertilizer (PK2) was 0.96 ± 0.45 mM for downy and 6.9 ± 0.76 mM for powdery mildew isolates. These compounds showed differences in their efficacy depending on the variability of mildews and could be an alternative or additional method to traditional pest management in the grapevine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amrani, L., & Corio-Costet, M.-F. (2006). A single nucleotide polymorphism in the beta-tubulin gene distinguishing two genotypes of Erysiphe necator expressing different symptoms on grapevine. Plant Pathology, 55, 505–512.

    Article  CAS  Google Scholar 

  • Andreu, A. B., Guevara, M. G., Wolski, E. A., Daleo, G. R., & Caldiz, D. O. (2006). Enhancement of natural disease resistance in potatoes by chemicals. Pest Management Science, 62, 162–170.

    Article  PubMed  CAS  Google Scholar 

  • Bompeix, G., & Saindrenan, P. (1984). In vitro antifungal activity of fosetyl-Al and phosphorous acid on Phytophthora species. Fruits, 39, 777–786.

    CAS  Google Scholar 

  • Bovie, C., Ongena, M., Thonart, P., & Dommes, J. (2004). Cloning and expression analysis of cDNAs corresponding to genes activated in cucumber showing systemic acquired resistance after BTH treatment. BMC Plant Biology, 26, 4–15.

    Google Scholar 

  • Bressan, A., & Purcell, A. H. (2005). Effect of benzothiadiazole on transmission of X-disease phytoplasma by the vector Colladonus montanus to Arabidopsis thaliana, a new experimental host plant. Plant Disease, 89, 1121–1124.

    Article  CAS  Google Scholar 

  • Brisset, M. N., Cesbron, S., Thomson, S. V., & Paulin, J. P. (2000). Acibenzolar-S-methyl induces the accumulation of defense-related enzymes in apple and protects from fire blight. European Journal of Plant Pathology, 106, 529–536.

    Article  CAS  Google Scholar 

  • Campbell, P. A., & Latorre, B. A. (2004). Suppression of grapevine powdery mildew (Uncinula necator) by acibenzolar-S-methyl. Vitis, 43, 209–210.

    CAS  Google Scholar 

  • Chen, W. J., Delmotte, F., Richard-Cervera, S., Douence, L., Greif, C., & Corio-Costet, M.-F. (2007). At Least two origins of fungicide resistance in grapevine downy mildew populations. Applied and Environmental Microbiology, 73, 5162–5172.

    Article  PubMed  CAS  Google Scholar 

  • Coffey, M. D., & Joseph, M. C. (1985). Effects of phosphorous acid and fosetyl-Al on the life cycle of Phytophthora cinnamomi and P. citricola. Phytopathology, 75, 1042–4046.

    Article  CAS  Google Scholar 

  • Corio-Costet, M.-F. (2007). Erysiphe necator (p. 132). Paris: Monograph, Tec/Doc Lavoisier.

    Google Scholar 

  • Corio-Costet, M.-F., Dufour, M.-C., Cigna, J., Abadie, P., & Chen, W. J. (2011). Diversity and fitness of Plasmopara viticola isolates resistant to QoI fungicides. European Journal of Plant Pathology, 129, 315–329.

    Article  Google Scholar 

  • Daniel, R., & Guest, D. (2006). Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 67, 194–201.

    Article  Google Scholar 

  • Dann, E. K., & Deverall, B. J. (2000). Activation of systemic disease resistance in pea by an avirulent bacterium or a benzothiadiazole, but not by a fungal leaf spot pathogen. Plant Pathology, 49, 324–332.

    Article  CAS  Google Scholar 

  • Debieu, D., Corio-Costet, M.-F., Steva, H., Malosse, C., & Leroux, P. (1995). Sterol composition of the wine powdery mildew fungus: Uncinula necator sensitive or resistant strains to the sterol biosynthesis inhibitor: triadimenol. Phytochemistry, 39, 293–300.

    Article  CAS  Google Scholar 

  • Delye, C., & Corio-Costet, M.-F. (1998). Origin of primary infections of grape by Uncinula necator: RAPD analysis discriminates two biotypes. Mycological Research, 102, 283–288.

    Article  Google Scholar 

  • Délye, C., Laigret, F., & Corio-Costet, M.-F. (1997). RAPD analysis provides insight into the biology and epidemiology of Uncinula necator. Phytopathology, 87, 670–677.

    Article  PubMed  Google Scholar 

  • Delye, C., Laigret, F., & Corio-Costet, M.-F. (1997). A mutation in the 14 Δ-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Applied and Environmental Microbiology, 63, 2966–2970.

    PubMed  CAS  Google Scholar 

  • Délye, C., Laigret, F., & Corio-Costet, M.-F. (1997). New tools for studying epidemiology of resistance of grape powdery mildew to DMI fungicides. Pesticide Science, 51, 309–314.

    Article  Google Scholar 

  • Dercks, W., & Creasy, L. L. (1989). Influence of fosetyl-Al on phytoalexin accumulation in the Plasmopara viticola grapevine interaction. Physiological and Molecular Plant Pathology, 34, 203–213.

    Article  CAS  Google Scholar 

  • Dufour, M-C. (2011). Etude de l’efficacité des défenses de différents genotypes de Vitis induites par élicitation face à la diversité génétique de bioagresseurs (Plasmopara viticola, Erysiphe necator). PhD, Bordeaux University, France, pp 334, N° 1897.

  • Dufour, M.-C., Fontaine, S., Montarry, J., & Corio-Costet, M.-F. (2011). Assessment of fungicide resistance and pathogen diversity in Erysiphe necator using quantitative real-time PCR assays. Pest Management Science, 67, 60–69.

    Article  PubMed  CAS  Google Scholar 

  • Dufour, M.-C., Lambert, C., Bouscaut, J., Merillon, J.-M, & Corio-Costet, M.-F. (2012). Benzothiadiazole-primed defense responses and enhanced differential expression of defense genes in Vitis vinifera infected with biotrophic pathogens (Erysiphe necator and Plasmopara viticola). Plant Pathology, doi: 10.11111/j.1365-3059.2012.02628.x

  • Eshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G. E., et al. (2011). Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology, 60, 1086–1095.

    Article  CAS  Google Scholar 

  • Evans, K. J., Whisson, D. L., Stummer, B. E., & Scott, E. S. (1997). DNA markers identify variation in Australian populations of Uncinula necator. Mycological Research, 101, 923–932.

    Article  CAS  Google Scholar 

  • Farih, A., Tsao, P. H., & Menge, J. A. (1981). Fungitoxic activity of fosetyl aluminium on growth sporulation and germination of Phytophthora parasitica and P. citrophthora. Phytopathology, 71, 934–936.

    Article  CAS  Google Scholar 

  • Fenn, M. E., & Coffey, M. D. (1985). Further evidence of the direct mode of action of fosetyl-Al and phosphorous acid. Phytopathology, 75, 601–611.

    Article  Google Scholar 

  • Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Gut Rella, M., et al. (1996). A benzothiadiazole derivative induces systemic acquired resistance in tobacco. The Plant Journal, 10, 61–70.

    Article  CAS  Google Scholar 

  • Garcion, C., Lamotte, O., & Metraux, J.-P. (2007). Mechanisms of defence to pathogens: biochemistry and physiology. In D. Walters, A. Newton, & G. Lyon (Eds.), Induced resistance for plant defence: A sustainable approach to crop protection (pp. 109–123). Oxford: Blackwell.

    Chapter  Google Scholar 

  • Gisi, U., Sierotzki, H., Cook, H., & McCaffery, A. (2002). Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Management Science, 58, 859–867.

    Article  PubMed  CAS  Google Scholar 

  • Gisi, U., Waldner, M., Kraus, N., Dubuis, P. H., & Sierotski, H. (2007). Inheritance of resistance to carboxylic acid amide (CAA) fungicides in Plasmopara viticola. Plant Pathology, 56, 199–208.

    Article  CAS  Google Scholar 

  • Guest, D. I. (1984). Modification of defence responses in tobacco and capsicum following treatment with fosetyl-Al aluminium tris (o-ethyl phosphonate). Physiological Plant Pathology, 25, 125–134.

    Article  CAS  Google Scholar 

  • Guest, D., & Grant, B. (1991). The Complex Action of Phosphonates as Antifungal Agents. Biological Reviews of the Cambridge Philosophical Society, 66, 159–187.

    Article  Google Scholar 

  • Hardy, G. E. S., Barrett, S., & Shearer, B. L. (2001). The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australian Plant Pathology, 30, 133–139.

    Article  Google Scholar 

  • Hukkanen, A., Kokko, H., Buchala, A., Häyrinen, J., & Käenlampi, S. (2008). BTH affects the leaf proteome in arctic bramble (Rubus arcticus). Molecular Plant Pathology, 9, 799–808.

    Article  PubMed  CAS  Google Scholar 

  • Iriti, M., Rossoni, M., Borgo, M., & Faoro, F. (2004). Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. Journal of Agricultural and Food Chemistry, 52, 4406–4413.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, T. J., Burgess, T., Colquhoun, I., & Hardy, G. E. S. (2000). Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology, 49, 147–154.

    Article  CAS  Google Scholar 

  • Lafon, R., & Clerjeau, M. (1988). Downy mildew. In P. C. Pearson & A. C. Goheen (Eds.), Compendium of grape diseases (pp. 11–13). Minnesota: APS Press.

    Google Scholar 

  • Lafon, R., Bugaret, Y., & Bulit, J. (1977). New prospects for controlling grapevine downy mildew (Plasmopara viticola) with a systemic fungicide, aluminium ethylphosphite. Phytiatrie-Phytopharmacie, 26, 19–40.

    CAS  Google Scholar 

  • Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., et al. (1996). Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. The Plant Journal, 10, 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Lobato, M. C., Olivieri, F. P., Gonzalez Altamiranda, E. A., Wolski, E. A., Daleo, G. R., Caldiz, D. O., et al. (2008). Phosphite compounds reduce severity in potato seed tubers and foliage. European Journal of Plant Pathology, 122, 349–358.

    Article  CAS  Google Scholar 

  • Lyon, G. (2007). Agents that can elicit induced resistance. In D. Walters, A. Newton, & G. Lyon (Eds.), Induced resistance for plant defence: A sustainable approach to crop protection (pp. 9–29). Oxford: Blackwell.

    Chapter  Google Scholar 

  • MacDonald, A. E., Grant, B. R., & Plaxton, W. C. (2001). Phosphite (phosphorous acid): its relevance in the environment and agriculture and influence on plant phosphate starvation response. Journal of Plant Nutrition, 10, 41505–51519.

    Google Scholar 

  • Margni, M., Rossier, D., Crettaz, P., & Jolliet, O. (2002). Life cycle impact assessment of pesticides on human health and ecosystems. Agriculture, Ecosystems and Environment, 93, 379–392.

    Article  CAS  Google Scholar 

  • Massoud, K., Barchietto, T., Le Rudulier, T., Pallandre, L., Didierlaurent, L., Garnier, M., Ambard-Bretteville, F., Seng, J.-M., & Saindrenan, P. (2012) Dissecting the phosphite-induced priming in arabidopsis infected with Hyalopreonospora arabidopsidis. Plant Physiology, doi: 10.1104/pp.112.194647

  • Matheron, M. E., & Porchas, M. (2000). Impact of Azoxystrobin, Dimethomorph, Fluazinam, Fosetyl-AL, and Metalaxyl on growth, sporulation and zoospore cyst germination of three Phytophthora spp. Plant Disease, 84, 454–458.

    Article  CAS  Google Scholar 

  • Montarry, J., Cartolaro, P., Delmotte, F., Jolivet, J., & Willocquet, L. (2008). Genetic structure and aggressiveness of Erysiphe necator populations during grapevine powdery mildew epidemics. Applied and Environmental Microbiology, 74, 6327–6332.

    Article  PubMed  CAS  Google Scholar 

  • Munoz, A., & Moret, A. (2010). Sensitivity of Botrytis cinerea to chitosan and acibenzolar-S-methyl. Pest Management Science, 66, 974–979.

    Article  PubMed  CAS  Google Scholar 

  • Pajot, E., & Silué, D. (2005). Evidence that DL-3-aminobutyric acid and acibenzolar-S-methyl induce resistance against bacterial head rot disease of broccoli. Pest Management Science, 61, 1110–1114.

    Article  PubMed  CAS  Google Scholar 

  • Perazzolli, M., Dagostin, S., Ferrari, A., Elad, Y., & Pertot, I. (2008). Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biological Control, 47, 228–234.

    Article  CAS  Google Scholar 

  • Peressotti, E., Duchene, E., Merdinoglu, D., & Mestre, P. (2011). A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation. Journal of Microbiolical Methods, 84, 265–271.

    Article  Google Scholar 

  • Rohilla, R., Singh, U. S., & Singh, R. L. (2001). Mode of action of acibenzolar-S-methyl against sheath blight of rice caused by Rhizoctonia solani Kuhn. Pest Management Science, 58, 63–69.

    Article  Google Scholar 

  • Siegrist, L., Glenewinkel, D., Kolle, C., & Schmidtke, M. (1997). Chemically induced resistance in green bean against bacterial and fungal pathogens. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 104, 599–610.

    CAS  Google Scholar 

  • Smillie, R., Grant, B. R., & Guest, D. (1989). The mode of action of phosphite - evidence for both direct and indirect modes of action on 3 Phytophthora spp in plants. Phytopathology, 79, 921–926.

    Article  CAS  Google Scholar 

  • Sombardier, A., Dufour, M.-C., Blancard, D., & Corio-Costet, M.-F. (2011). Sensitivity of Podosphaera aphanis isolates to DMI fungicides: distribution and reduced cross-sensitivity. Pest Management Science, 66, 35–43.

    Article  Google Scholar 

  • Soyez, J. L. (2001). New phosphonates and potassium polyvalents for use in viticulture (1993–2001). Progrès Agricole et Viticole, 118, 487–490.

    Google Scholar 

  • Speiser, B., Berner, A., Haseli, A., & Tamm, L. (2000). Control of downy mildew of grapevine with potassium phosphonate: effectivity and phosphonate residues in wine. Biological Agriculture and Horticulture, 17, 305–312.

    Article  Google Scholar 

  • Walters, D., Newton, A., & Lyon, G. (2007). Induced resistance for plant defence: A sustainable approach to crop protection (p. 258). Oxford: Blackwell.

    Book  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Bordeaux Wine Trade Council (CIVB) and INRA. We are grateful to G. Taris and S. Gambier for their technical assistance, to L. De Bastard from Syngenta for supplying ASM, JP Soyer for supplying PK2 and to J. Coulter for reading the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-France Corio-Costet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufour, MC., Corio-Costet, MF. Variability in the sensitivity of biotrophic grapevine pathogens (Erysiphe necator and Plasmopara viticola) to acibenzolar-S methyl and two phosphonates. Eur J Plant Pathol 136, 247–259 (2013). https://doi.org/10.1007/s10658-012-0159-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0159-2

Keywords

Navigation