Skip to main content
Log in

Pretargeting of necrotic tumors with biotinylated hypericin using 123I-labeled avidin: evaluation of a two-step strategy

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

As an alternative to directly targeting of necrotic tissue using hypericin, we synthesized a conjugate of hypericin to biotin for use in a pretargeting approach. With this conjugate, we explored the possibility of a two-step pretargeting strategy using 123I-labeled avidin as effector molecule directed against necrotic RIF-1 tumors. Hypericin was conjugated to biotin-ethylenediamine in a straightforward coupling method using n-hydroxysuccinimide and dicyclohexylcarbodiimide. The necrosis avidity of the conjugate was first confirmed in necrotic liver tissue by means of fluorescence microscopy. Using autoradiography imaging and whole body-biodistribution, the accumulation of 123I-avidin in necrotic tumor tissue was evaluated 24 h after administration and 48 h after pretargeting with hypericin-biotin. Analysis of autoradiography images show a higher accumulation of 123I-avidin in pretargeted compared to nontargeted tissue. However, absolute accumulation of 123I-avidin in necrotic tumors was low as shown by biodistribution experiments. Direct injection of hypericin-biotin or biotin-fluorescein did not substantially improve 123I-avidin accumulation after pretargeting, pointing towards a poor penetration of avidin in necrotic tissue. Our results show the feasibility of a pretargeting technique using a small molecule as targeting agent. However, for a more efficient accumulation of the effector molecule in necrotic tissue, other pretargeting strategies need to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barreto JA, O'Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23(12):H18–40. doi:10.1002/adma.201100140

    Article  PubMed  CAS  Google Scholar 

  2. Jain M, Venkatraman G, Batra SK (2007) Optimization of radioimmunotherapy of solid tumors: biological impediments and their modulation. Clin Cancer Res 13(5):1374–82. doi:1078-0432.CCR-06-2436

    Article  PubMed  CAS  Google Scholar 

  3. Cooper EH, Bedford AJ, Kenny TE (1975) Cell death in normal and malignant tissues. Adv Cancer Res 21:59–120

    Article  PubMed  CAS  Google Scholar 

  4. Epstein AL, Chen FM, Taylor CR (1988) A novel method for the detection of necrotic lesions in human cancers. Cancer Res 48(20):5842–8

    PubMed  CAS  Google Scholar 

  5. Ni Y, Bormans G, Chen F, Verbruggen A, Marchal G (2005) Necrosis avid contrast agents: functional similarity versus structural diversity. Invest Radiol 40(8):526–35

    Article  PubMed  CAS  Google Scholar 

  6. Li J, Sun Z, Zhang J, Shao H, Miranda Cona M, Wang H et al (2011) A dual-targeting anticancer approach: soil and seed principle. Radiology 260:799–807

    Article  PubMed  Google Scholar 

  7. Wang H, Miranda Cona M, Chen F, Li J, Yu J, Feng Y Y et al (2011) Comparison between nonspecific and necrosis-avid gadolinium contrast agents in vascular disrupting agent-induced necrosis of rodent tumors at 3.0T. Invest Radiol 46(9):531–8. doi:10.1097/RLI.0b013e31821a2116

    Article  PubMed  CAS  Google Scholar 

  8. Marysael T, Ni Y, Lerut E, de Witte P (2011) Influence of the vascular damaging agents DMXAA and ZD6126 on hypericin distribution and accumulation in RIF-1 tumors. J Cancer Res Clin Oncol 137(11):1619–27. doi:10.1007/s00432-011-1032-y

    Google Scholar 

  9. Van de Putte M, Wang H, Chen F, de Witte PA, Ni Y (2008) Hypericin as a marker for determination of tissue viability after intratumoral ethanol injection in a murine liver tumor model. Acad Radiol 15(1):107–13

    Article  PubMed  Google Scholar 

  10. Van de Putte M, Wang H, Chen F, De Witte PA, Ni Y (2008) Hypericin as a marker for determination of tissue viability after radiofrequency ablation in a murine liver tumor model. Oncol Rep 19(4):927–32

    PubMed  Google Scholar 

  11. Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5(6):423–35. doi:10.1038/nrc1628

    Article  PubMed  CAS  Google Scholar 

  12. Fonge H, Jin LX, Wang HJ, Bormans G, Ni YC, Verbruggen A (2008) Synthesis and preliminary biological evaluation of a Tc-99m-labeled hypericin derivative as a necrosis avid imaging agent. J Label Compd Radiopharm 51(1–2):33–40. doi:10.1002/jlcr.1468

    Article  CAS  Google Scholar 

  13. Gitlin G, Bayer EA, Wilchek M (1987) Studies on the biotin-binding site of avidin. Lysine residues involved in the active site. Biochem J 242(3):923–6

    PubMed  CAS  Google Scholar 

  14. Morag E, Bayer EA, Wilchek M (1996) Reversibility of biotin-binding by selective modification of tyrosine in avidin. Biochem J 316(Pt 1):193–9

    PubMed  CAS  Google Scholar 

  15. Gruszecka-Kowalik E, Zalkow LH (2000) An improved synthesis of hypericin and related compounds. Org Prep Proced Int 32(1):57–61

    Article  CAS  Google Scholar 

  16. Mock DM, DuBois DB (1986) A sequential, solid-phase assay for biotin in physiologic fluids that correlates with expected biotin status. Anal Biochem 153(2):272–8

    Article  PubMed  CAS  Google Scholar 

  17. Ching LM, Zwain S, Baguley BC (2004) Relationship between tumour endothelial cell apoptosis and tumour blood flow shutdown following treatment with the antivascular agent DMXAA in mice. Br J Cancer 90(4):906–10. doi:10.1038/sj.bjc.6601606

    Article  PubMed  CAS  Google Scholar 

  18. Crnolatac I, Huygens A, van Aerschot A, Busson R, Rozenski J, de Witte PA (2005) Synthesis, in vitro cellular uptake and photo-induced antiproliferative effects of lipophilic hypericin acid derivatives. Bioorg Med Chem 13(23):6347–53. doi:10.1016/j.bmc.2005.09.003

    Article  PubMed  CAS  Google Scholar 

  19. Melville DB (1954) Biotin sulfoxide. J Biol Chem 208(2):495–501

    PubMed  CAS  Google Scholar 

  20. Mock DM, Lankford GL, Mock NI (1995) Biotin accounts for only half of the total avidin-binding substances in human serum. J Nutr 125(4):941–6

    PubMed  CAS  Google Scholar 

  21. Van de Putte M, Marysael T, Fonge H, Roskams T, Miranda Cona M, Li J et al (2011) Radiolabeled iodohypericin as tumor necrosis avid tracer: diagnostic and therapeutic potential. Int J Cancer. doi:10.1002/ijc.26492

  22. Petronzelli F, Pelliccia A, Anastasi AM, Lindstedt R, Manganello S, Ferrari LE et al (2010) Therapeutic use of avidin is not hampered by antiavidin antibodies in humans. Cancer Biother Radiopharm 25(5):563–70. doi:10.1089/cbr.2010.0797

    Article  PubMed  CAS  Google Scholar 

  23. Ni Y, Huyghe D, Verbeke K, de Witte PA, Nuyts J, Mortelmans L et al (2006) First preclinical evaluation of mono-[123I]iodohypericin as a necrosis-avid tracer agent. Eur J Nucl Med Mol Imaging 33(5):595–601. doi:10.1007/s00259-005-0013-2

    Article  PubMed  CAS  Google Scholar 

  24. Fonge H, Vunckx K, Wang H, Feng Y, Mortelmans L, Nuyts J et al (2008) Non-invasive detection and quantification of acute myocardial infarction in rabbits using mono-[123I]iodohypericin microSPECT. Eur Heart J 29(2):260–9. doi:10.1093/eurheartj/ehm588

    Article  PubMed  CAS  Google Scholar 

  25. Song S, Xiong C, Zhou M, Lu W, Huang Q, Ku G et al (2011) Small-animal PET of tumor damage induced by photothermal ablation with 64Cu-bis-DOTA-hypericin. J Nucl Med 52(5):792–9

    Article  PubMed  CAS  Google Scholar 

  26. Van de Putte M, Ni Y, De Witte PA (2008) Exploration of the mechanism underlying the tumor necrosis avidity of hypericin. Oncol Rep 19(4):921–6

    PubMed  Google Scholar 

  27. Schechter B, Silberman R, Arnon R, Wilchek M (1990) Tissue distribution of avidin and streptavidin injected to mice—effect of avidin carbohydrate, streptavidin truncation and exogenous biotin. Eur J Biochem 189(2):327–31

    Article  PubMed  CAS  Google Scholar 

  28. Li GP, Zhang H, Zhu CM, Zhang J, Jiang XF (2005) Avidin-biotin system pretargeting radioimmunoimaging and radioimmunotherapy and its application in mouse model of human colon carcinoma. World J Gastroenterol 11(40):6288–94

    PubMed  CAS  Google Scholar 

  29. Chen FM, Taylor CR, Epstein AL (1989) Tumor necrosis treatment of Me-180 human cervical-carcinoma model with I-131-labeled Tnt-1 monoclonal-antibody. Cancer Res 49(16):4578–85

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a PhD grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter de Witte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marysael, T., Bauwens, M., Ni, Y. et al. Pretargeting of necrotic tumors with biotinylated hypericin using 123I-labeled avidin: evaluation of a two-step strategy. Invest New Drugs 30, 2132–2140 (2012). https://doi.org/10.1007/s10637-011-9778-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-011-9778-2

Keywords

Navigation