Skip to main content

Advertisement

Log in

Androgen Receptor and Androgen-Responsive Gene FKBP5 Are Independent Prognostic Indicators for Esophageal Adenocarcinoma

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Esophageal adenocarcinoma is a male-dominant disease, but the role of androgens is unclear.

Aims

To examine the expression and clinical correlates of the androgen receptor (AR) and the androgen-responsive gene FK506-binding protein 5 (FKBP5) in esophageal adenocarcinoma.

Methods

Expression of AR and FKBP5 was determined by immunohistochemistry. The effect of the AR ligand 5α-dihydrotestosterone (DHT) on the expression of a panel of androgen-responsive genes was measured in AR-positive and AR-negative esophageal adenocarcinoma cell lines. Correlations in expression between androgen-responsive genes were analyzed in an independent cohort of esophageal adenocarcinoma tissues.

Results

There was AR staining in 75 of 77 cases (97 %), and FKBP5 staining in 49 (64 %), all of which had nuclear AR. Nuclear AR with FKBP5 expression was associated with decreased median survival (451 vs. 2800 days) and was an independent prognostic indicator (HR 2.894, 95 % CI 1.396–6.002, p = 0.0043) in multivariable Cox proportional hazards models. DHT induced a significant increase in expression of the androgen-responsive genes FKBP5, HMOX1, FBXO32, VEGFA, WNT5A, and KLK3 only in AR-positive cells in vitro. Significant correlations in expression were observed between these androgen-responsive genes in an independent cohort of esophageal adenocarcinoma tissues.

Conclusion

Nuclear AR and expression of FKBP5 is associated with decreased survival in esophageal adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lagergren J, Mattsson F. Diverging trends in recent population-based survival rates in oesophageal and gastric cancer. PLoS One. 2012;7:e41352.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lord RV, Law MG, Ward RL, Giles GG, Thomas RJ, Thursfield V. Rising incidence of oesophageal adenocarcinoma in men in Australia. J Gastroenterol Hepatol. 1998;13:356–362.

    Article  CAS  PubMed  Google Scholar 

  3. Dodaran MS, Silcocks PB, Logan RFA. Continuing rise in incidence of oesophageal adenocarcinoma in England and Wales. Gut. 2001;48:110.

    Article  Google Scholar 

  4. Rutegard M, Lagergren P, Nordenstedt H, Lagergren J. Oesophageal adenocarcinoma: the new epidemic in men? Maturitas. 2011;69:244–248.

    Article  PubMed  Google Scholar 

  5. van Soest EM, Siersema PD, Dieleman JP, Sturkenboom MC, Kuipers EJ. Age and sex distribution of the incidence of Barrett’s esophagus found in a Dutch primary care population. Am J Gastroenterol. 2005;100:2599–2600.

    Article  PubMed  Google Scholar 

  6. Derakhshan MH, Liptrot S, Paul J, Brown IL, Morrison D, McColl KE. Oesophageal and gastric intestinal-type adenocarcinomas show the same male predominance due to a 17 year delayed development in females. Gut. 2009;58:16–23.

    Article  CAS  PubMed  Google Scholar 

  7. Akgun H, Lechago J, Younes M. Estrogen receptor-beta is expressed in Barrett’s metaplasia and associated adenocarcinoma of the esophagus. Anticancer Res. 2002;22:1459–1461.

    CAS  PubMed  Google Scholar 

  8. Tiffin N, Suvarna SK, Trudgill NJ, Riley SA. Sex hormone receptor immunohistochemistry staining in Barrett’s oesophagus and adenocarcinoma. Histopathology. 2003;42:95–96.

    Article  CAS  PubMed  Google Scholar 

  9. Sukocheva OA, Wee C, Ansar A, Hussey DJ, Watson DI. Effect of estrogen on growth and apoptosis in esophageal adenocarcinoma cells. Dis Esophagus. 2013;26:628–635.

    Article  CAS  PubMed  Google Scholar 

  10. Cook MB, Wood SN, Cash BD, et al. Association between circulating levels of sex steroid hormones and Barrett’s esophagus in men: a case-control analysis. Clin Gastroenterol Hepatol. 2015;13:673–682.

    Article  CAS  PubMed  Google Scholar 

  11. Awan AK, Iftikhar SY, Morris TM, et al. Androgen receptors may act in a paracrine manner to regulate oesophageal adenocarcinoma growth. Eur J Surg Oncol. 2007;33:561–568.

    Article  CAS  PubMed  Google Scholar 

  12. Tihan T, Harmon JW, Wan X, et al. Evidence of androgen receptor expression in squamous and adenocarcinoma of the esophagus. Anticancer Res. 2001;21:3107–3114.

    CAS  PubMed  Google Scholar 

  13. Cooper SC, Croft S, Day R, Thomson CS, Trudgill NJ. Patients with prostate cancer are less likely to develop oesophageal adenocarcinoma: could androgens have a role in the aetiology of oesophageal adenocarcinoma? Cancer Causes Control. 2009;20:1363–1368.

    Article  PubMed  Google Scholar 

  14. Jiang X, Tseng CC, Bernstein L, Wu AH. Family history of cancer and gastroesophageal disorders and risk of esophageal and gastric adenocarcinomas: a case-control study. BMC Cancer. 2014;14:60.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Magee JA, Chang LW, Stormo GD, Milbrandt J. Direct, androgen receptor-mediated regulation of the FKBP5 gene via a distal enhancer element. Endocrinology. 2006;147:590–598.

    Article  CAS  PubMed  Google Scholar 

  16. Makkonen H, Kauhanen M, Paakinaho V, Jaaskelainen T, Palvimo JJ. Long-range activation of FKBP51 transcription by the androgen receptor via distal intronic enhancers. Nucleic Acids Res. 2009;37:4135–4148.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Nelson PS, Clegg N, Arnold H, et al. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci USA. 2002;99:11890–11895.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kwack MH, Sung YK, Chung EJ, et al. Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J Invest Dermatol. 2008;128:262–269.

    Article  CAS  PubMed  Google Scholar 

  19. Leach DA, Need EF, Trotta AP, Grubisha MJ, Defranco DB, Buchanan G. Hic-5 influences genomic and non-genomic actions of the androgen receptor in prostate myofibroblasts. Mol Cell Endocrinol. 2014;384:185–199.

    Article  CAS  PubMed  Google Scholar 

  20. Leach DA, Need EF, Toivanen R, et al. Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome. Oncotarget. 2015;6:16135–16150.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Eisermann K, Broderick CJ, Bazarov A, Moazam MM, Fraizer GC. Androgen up-regulates vascular endothelial growth factor expression in prostate cancer cells via an Sp1 binding site. Mol Cancer. 2013;12:7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wang G, Jones SJ, Marra MA, Sadar MD. Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells. Oncogene. 2006;25:7311–7323.

    Article  CAS  PubMed  Google Scholar 

  23. Mostaghel EA, Page ST, Lin DW, et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 2007;67:5033–5041.

    Article  CAS  PubMed  Google Scholar 

  24. Smith E, Ruszkiewicz AR, Jamieson GG, Drew PA. IGFBP7 is associated with poor prognosis in oesophageal adenocarcinoma and is regulated by promoter DNA methylation. Br J Cancer. 2014;110:775–782.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Barry SC, Harder B, Brzezinski M, Flint LY, Seppen J, Osborne WR. Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum Gene Ther. 2001;12:1103–1108.

    Article  CAS  PubMed  Google Scholar 

  26. Need EF, Scher HI, Peters AA, et al. A novel androgen receptor amino terminal region reveals two classes of amino/carboxyl interaction-deficient variants with divergent capacity to activate responsive sites in chromatin. Endocrinology. 2009;150:2674–2682.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kim SM, Park YY, Park ES, et al. Prognostic biomarkers for esophageal adenocarcinoma identified by analysis of tumor transcriptome. PLoS One. 2010;5:e15074.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Munoz J, Wheler JJ, Kurzrock R. Androgen receptors beyond prostate cancer: an old marker as a new target. Oncotarget. 2015;6:592–603.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Chang C, Lee SO, Yeh S, Chang TM. Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene. 2014;33:3225–3234.

    Article  CAS  PubMed  Google Scholar 

  30. Staibano S, Mascolo M, Ilardi G, Siano M, De Rosa G. Immunohistochemical analysis of FKBP51 in human cancers. Curr Opin Pharmacol. 2011;11:338–347.

    Article  CAS  PubMed  Google Scholar 

  31. Romano S, Staibano S, Greco A, et al. FK506 binding protein 51 positively regulates melanoma stemness and metastatic potential. Cell Death Dis. 2013;4:e578.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Jiang W, Cazacu S, Xiang C, et al. FK506 binding protein mediates glioma cell growth and sensitivity to rapamycin treatment by regulating NF-kappaB signaling pathway. Neoplasia. 2008;10:235–243.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mukaide H, Adachi Y, Taketani S, et al. FKBP51 expressed by both normal epithelial cells and adenocarcinoma of colon suppresses proliferation of colorectal adenocarcinoma. Cancer Invest. 2008;26:385–390.

    Article  CAS  PubMed  Google Scholar 

  34. Periyasamy S, Hinds T Jr, Shemshedini L, Shou W, Sanchez ER. FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A. Oncogene. 2010;29:1691–1701.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Romano S, D’Angelillo A, Staibano S, Ilardi G, Romano MF. FK506-binding protein 51 is a possible novel tumoral marker. Cell Death Dis. 2010;1:e55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Amler LC, Agus DB, LeDuc C, et al. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res. 2000;60:6134–6141.

    CAS  PubMed  Google Scholar 

  37. Velasco AM, Gillis KA, Li Y, et al. Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology. 2004;145:3913–3924.

    Article  CAS  PubMed  Google Scholar 

  38. Pei H, Li L, Fridley BL, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell. 2009;16:259–266.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Ronnov-Jessen L, Petersen OW, Bissell MJ. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev. 1996;76:69–125.

    CAS  PubMed  Google Scholar 

  40. Peehl DM. Primary cell cultures as models of prostate cancer development. Endocr Relat Cancer. 2005;12:19–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Bill Panagopoulos for technical assistance and provision of PCR primers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Smith.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Eric Smith and Helen M. Palethorpe have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, E., Palethorpe, H.M., Ruszkiewicz, A.R. et al. Androgen Receptor and Androgen-Responsive Gene FKBP5 Are Independent Prognostic Indicators for Esophageal Adenocarcinoma. Dig Dis Sci 61, 433–443 (2016). https://doi.org/10.1007/s10620-015-3909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3909-0

Keywords

Navigation