Skip to main content
Log in

MSCs transplantation with application of G-CSF reduces apoptosis or increases VEGF in rabbit model of myocardial infarction

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The purpose of this study was to test whether mesenchymal stem cells (MSCs) transplantation with application of granulocyte colony-stimulating factor (G-CSF) would have beneficial effects on damaged heart in a rabbit model of myocardial infarction (MI). MI was created by ligation of the left anterior descending coronary artery. After induction of MI, 40 New Zealand white rabbits were randomly divided into 8 groups: (1) MSCs injection at 3 days after MI; (2) G-CSF injection at 3 days after MI; (3) MSCs + G-CSF (20 u/kg/day) injection at 3 days after MI; (4) PBS injection at 3 days after MI; (5) MSCs injection at 7 days after MI; (6) G-CSF injection at 7 days after MI; (7) MSCs + G-CSF (20 u/kg/day) injection 7 days after MI; and (8) PBS injection 7 days after MI. TUNEL analysis showed that the apoptotic cells were distributed in the marginal area of MI. In both 3 and 7 days after MI groups, there were less apoptotic cells in the MSCs and MSCs + G-CSF groups as compared with the PBS group (P < 0.05). However, no decrease in apoptosis was observed in the G-CSF only group (P > 0.05). Immunohistochemistry analysis demonstrated that the expression level of vascular endothelial growth factor was higher in the MSCs, MSCs + G-CSF and G-CSF groups as compared with the PBS group. The present study demonstrated a beneficial effect of MSCs transplantation with application of G-CSF in the treatment of rabbit MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amano K, Matsubara H, Iba O, Okigaki M, Fujiyama S, Imada T, Kojima H, Nozawa Y, Kawashima S, Yokoyama M, Iwasaka T (2003) Enhancement of ischemia-induced angiogenesis by eNOS overexpression. Hypertension 41:156–162

    Article  CAS  Google Scholar 

  • Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  CAS  Google Scholar 

  • Besse A, Trimoreau F, Praloran V, Denizot Y (2000) Effect of cytokines and growth factors on the macrophage colony-stimulating factor secretion by human bone marrow stromal cells. Cytokine 12:522–525. doi:http://www.ncbi.nlm.nih.gov/pubmed/10857771

    Article  CAS  Google Scholar 

  • Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  Google Scholar 

  • Cheng Z, Liu X, Ou L, Zhou X, Liu Y, Jia X, Zhang J, Li Y, Kong D (2008) Mobilization of mesenchymal stem cells by granulocyte colony-stimulating factor in rats with acute myocardial infarction. Cardiovasc Drugs Ther 22:363–371

    Article  CAS  Google Scholar 

  • Condorelli G, Morisco C, Stassi G, Notte A, Farina F, Sgaramella G, de Rienzo A, Roncarati R, Trimarco B, Lembo G (1999) Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation 99:3071–3078

    Article  CAS  Google Scholar 

  • Dai W, Hale SL, Martin BJ, Kuang JQ, Dow JS, Wold LE, Kloner RA (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112:214–223. doi:http://www.ncbi.nlm.nih.gov/pubmed/15998673

    Article  Google Scholar 

  • Derubeis AR, Cancedda R (2004) Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng 32:160–165

    Article  Google Scholar 

  • Du H, Naqvi H, Taylor HS (2012) Ischemia/reperfusion injury promotes and granulocyte-colony stimulating factor inhibits migration of bone marrow-derived stem cells to endometrium. Stem Cells Dev 21:3324–3331

    Google Scholar 

  • Fan L, Chen L, Chen X, Fu F (2008) A meta-analysis of stem cell mobilization by granulocyte colony-stimulating factor in the treatment of acute myocardial infarction. Cardiovasc Drugs Ther 22:45–54

    Article  CAS  Google Scholar 

  • Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, Weissman NJ, Leon MB, Epstein SE, Kornowski R (2001) Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 37:1726–1732. doi:http://www.ncbi.nlm.nih.gov/pubmed/11345391

    Article  CAS  Google Scholar 

  • Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368. doi:http://www.ncbi.nlm.nih.gov/pubmed/15812508

    Article  CAS  Google Scholar 

  • Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH (2002) Isolation and characterization of size-sieved stem cells from human bone marrow. Stem cells 20:249–258

    Article  Google Scholar 

  • Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, Iwasaka T (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104:1046–1052

    Article  CAS  Google Scholar 

  • Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637

    Article  CAS  Google Scholar 

  • Kinnaird T, Stabile E, Burnett M, Lee C, Barr S, Fuchs S, Epstein S (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    Article  CAS  Google Scholar 

  • Kocher A, Schuster M, Szabolcs M, Takuma S, Burkhoff D, Wang J, Homma S, Edwards N, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  CAS  Google Scholar 

  • Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S (2005) Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes a novel mechanism for cell fate changes? Circ Res 96:1039–1041

    Article  CAS  Google Scholar 

  • Labarthe DR, Biggers A, Goff DC Jr, Houston M (2005) Translating a plan into action: a public health action plan to prevent heart disease and stroke. Am J Prev Med 29:146–151. doi:http://www.ncbi.nlm.nih.gov/pubmed/16389141

    Article  Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KBS, Virag JI, Bartelmez SH, Poppa V (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  CAS  Google Scholar 

  • Olivetti G, Capasso JM, Meggs LG, Sonnenblick EH, Anversa P (1991) Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ Res 68:856–869

    Article  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349. doi:10.1073/pnas.181177898

    Article  CAS  Google Scholar 

  • Park KI, Hack MA, Ourednik J, Yandava B, Flax JD, Stieg PE, Gullans S, Jensen FE, Sidman RL, Ourednik V, Snyder EY (2006) Acute injury directs the migration, proliferation, and differentiation of solid organ stem cells: evidence from the effect of hypoxia-ischemia in the CNS on clonal “reporter” neural stem cells. Exp Neurol 199:156–178. doi:http://www.ncbi.nlm.nih.gov/pubmed/16737696

    Article  Google Scholar 

  • Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662–1668. doi:10.1182/blood-2003-09-3070

    Article  CAS  Google Scholar 

  • Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81:1161–1172

    Article  CAS  Google Scholar 

  • Reddy AM, Kwak BK, Shim HJ, Ahn C, Lee HS, Suh YJ, Park ES (2010) In vivo tracking of mesenchymal stem cells labeled with a novel chitosan-coated superparamagnetic iron oxide nanoparticles using 3.0T MRI. J Korean Med Sci 25:211–219

    Google Scholar 

  • Redzić A, Smajilagić A, Aljicević M, Berberović L (2010) In vivo osteoinductive effect and in vitro isolation and cultivation bone marrow mesenchymal stem cells. Coll Antropol 34:1405–1409

    Google Scholar 

  • Ripa RS, Kastrup J (2008) G-CSF therapy with mobilization of bone marrow stem cells for myocardial recovery after acute myocardial infarction—A relevant treatment? Exp Hematol 36:681–686

    Article  CAS  Google Scholar 

  • Ripa RS, Jørgensen E, Wang Y, Thune JJ, Nilsson JC, Søndergaard L, Johnsen HE, Køber L, Grande P, Kastrup J (2006) Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 113:1983–1992

    Article  CAS  Google Scholar 

  • Rosenstrauch D, Poglajen G, Zidar N, Gregoric ID (2005) Stem cell therapy for ischemic heart failure. Tex Heart Inst J 32:339–347

    Google Scholar 

  • Sánchez PL, San Román JA, Villa A, Fernández ME, Fernández-Avilés F (2006) Contemplating the bright future of stem cell therapy for cardiovascular disease. Nat Clin Pract Cardiovasc Med 3:S138–S151

    Article  Google Scholar 

  • Schuster MD, Kocher AA, Seki T, Martens TP, Xiang G, Homma S, Itescu S (2004) Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol 287:H525–H532. doi:10.1152/ajpheart.0 0058.2004

    Article  CAS  Google Scholar 

  • Su H, Lu R, Kan YW (2000) Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart. Proc Natl Acad Sci USA 97:13801–13806. doi:10.1073/pnas.250488097

    Article  CAS  Google Scholar 

  • Tang YL, Zhao Q, Zhang YC, Cheng L, Liu M, Shi J, Yang YZ, Pan C, Ge J, Phillips MI (2004) Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regul Pept 117:3–10. doi:http://www.ncbi.nlm.nih.gov/pubmed/14687695

    Article  CAS  Google Scholar 

  • Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J, Phillips MI (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80:229–236

    Google Scholar 

  • Tomita S, Li RK, Weisel RD, Mickle DAG, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II-247–II-256

    Article  CAS  Google Scholar 

  • Tülpar S, Poyrazoglu MH, Özbilge H, Bastug F, Gündüz Z, Torun YA, Kaya EG, Akgün H, Dursun I, Düsünsel R (2012) Modulation of inflammation by mesenchymal stem cell transplantation in peritoneal dialysis in rats. Ren Fail 34:1317–1323

    Google Scholar 

  • Vogel G (2000) Stem cells: new excitement, persistent questions. Science 290:1672–1674

    Article  CAS  Google Scholar 

  • Wang Y, Li J, Lei L, Jiang C, An S, Zhan Y, Cheng Q, Zhao Z, Wang J (2012) Effects of hypoxia on osteogenic differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem 362:25–33

    Google Scholar 

  • Zachary I (2001) Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am J Physiol Cell Physiol 280:C1375–C1386

    CAS  Google Scholar 

  • Zohlnhöfer D, Ott I, Mehilli J, Schömig K, Michalk F, Ibrahim T, Meisetschläger G, von Wedel J, Bollwein H, Seyfarth M (2006) Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction. JAMA 295:1003–1010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangmin Zhao or Guixiang Zhang.

Additional information

Jia Yang and Jindong Xia are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Xia, J., He, Y. et al. MSCs transplantation with application of G-CSF reduces apoptosis or increases VEGF in rabbit model of myocardial infarction. Cytotechnology 67, 27–37 (2015). https://doi.org/10.1007/s10616-013-9655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9655-2

Keywords

Navigation