Skip to main content

Advertisement

Log in

Development of optimal medium for production of commercially important monoclonal antibody 520C9 by hybridoma cell

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Hybridoma HB-8696 produces monoclonal antibody (mAb) 520C9 (mouse IgG1), which recognizes breast cancer oncoprotein c-erbB2. The objective of this study was to optimize the medium recipe of HB 8696 cell for production of mAb 520C9. The optimization consisted of two steps: (1) screening of significant nutrients to make subsequent experiments more efficient with less runs and (2) locating their optimal concentrations. 29 variables including essential and non-essential amino acids, glucose, serum and 6 salts, namely NaCl, KCl, CaCl2, NaH2PO4, MgSO4 and Na-pyruvate were chosen in screening phase. The Plackett–Burman method was used to screen the variables influencing mAb production. Seven factors namely glucose, serum, asparagine, threonine, serine, NaCl and NaH2PO4 were identified to have a positive influencing role on mAb production with a confidence level >90 % (p < 0.1). Finally, Response surface methodology revealed the optimal level of the variables. The mAb production and average specific mAb production rate were enhanced by 111.05 and 105 %, respectively, compared to control medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alwis DMD, Dutton RL, Scharer J, Young MM (2007) Statistical methods in media optimization for batch and fed-batch animal cell culture. Bioprocess Biosyst Eng 30:107–113

    Article  CAS  Google Scholar 

  • Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters: an introduction to design, data analysis, and model building. Wiley, NewYork

    Google Scholar 

  • Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    Article  CAS  Google Scholar 

  • Chua FKF, Yap MGS, Oh SKW (1994) Hyper-stimulation of monoclonal-antibody production by high osmolarity stress in Erdf medium. J Biotechnol 37:265–275

    Article  CAS  Google Scholar 

  • Dalili M, Ollis DF (1989) Transient kinetics of hybridoma growth and monoclonal antibody production in serum-limited cultures. Biotechnol Bioeng 33:984–990

    Article  CAS  Google Scholar 

  • deZengotita VM, Miller WM, Aunins JG, Zhou WC (2000) Phosphate feeding improves high-cell-concentration NS0 myeloma culture performance for monoclonal antibody production. Biotechnol Bioeng 69:566–576

    Article  CAS  Google Scholar 

  • Ducommun P, Ruffieux PA, von Stockar U, Marison I (2001) The role of vitamins and amino acids on hybridoma growth and monoclonal antibody production. Cytotechnology 37:65–73

    Article  CAS  Google Scholar 

  • Duval D, Demangel C, Munierjolain K, Miossec S, Geahel I (1991) Factors controlling cell-proliferation and antibody-production in mouse hybridoma cells.1. Influence of the amino-acid supply. Biotechnol Bioeng 38:561–570

    Article  CAS  Google Scholar 

  • Falkenberg FW, Weichert H, Krane M, Bartels I, Palme M, Nagels HO, Fiebig H (1995) In vitro production of monoclonal-antibodies in high-concentration in a new and easy to handle modular minifermenter. J Immunol Methods 179:13–29

    Article  CAS  Google Scholar 

  • Feder J, Tolbert WR (1985) Mass culture of mammalian cells in perfusion systems. Am Biotech Lab 3:24–36

    Article  CAS  Google Scholar 

  • Franek F (1995) Starvation-induced programmed death of hybridoma cells, prevention by amino-acid mixtures. Biotechnol Bioeng 45:86–90

    Article  CAS  Google Scholar 

  • Geaugey V, Duval D, Geahel I, Marc A, Engasser JM (1989) Influence of amino acids on hybridoma cell viability and antibody secretion. Cytotechnology 2:119–129

    Article  CAS  Google Scholar 

  • Gey M, Klossek P, Becker U (1990) Characterization of biotechnological processes and products using high-performance liquid-chromatography (Hplc).6. Determination of lactic-acid and short-chain carboxylic-acids C1–C5. Acta Biotechnol 10:459–468

    Article  CAS  Google Scholar 

  • Glacken MW, Fleischaker RJ, Sinskey AJ (1986) Reduction of waste product excretion via nutrient control—possible strategies for maximizing product and cell yields on serum in cultures of mammalian-cells. Biotechnol Bioeng 28:1376–1389

    Article  CAS  Google Scholar 

  • Hiller GW, Clark DS, Blanch HW (1994) Transient responses of hybridoma cells in continuous-culture to step changes in amino-acid and vitamin concentrations. Biotechnol Bioeng 44:303–321

    Article  CAS  Google Scholar 

  • Jager M, Schoberth A, Ruf P, Hess J, Lindhofer H (2009) The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2. Cancer Res 69:4270–4276. doi:10.1158/0008-5472.Can-08-2861

    Article  Google Scholar 

  • Jo EC, Park HJ, Park JM, Kim KH (1990) Balanced nutrient fortification enables high-density hybridoma cell-culture in batch culture. Biotechnol Bioeng 36:717–722

    Article  CAS  Google Scholar 

  • Jorgensen JT, Nielsen KV, Ejlertsen B (2007) Pharmacodiagnostics and targeted therapies: a rational approach for individualizing medical anticancer therapy in breast cancer. Oncologist 12:397–405

    Article  Google Scholar 

  • Kelley B (2009) Industrialization of mAb production technology. The bioprocessing industry at a crossroads. Mabs 1:443–452

    Article  Google Scholar 

  • Krause I, Bockhardt A, Neckermann H, Henle T, Klostermeyer H (1995) Simultaneous determination of amino acids and biogenic amines by reversed-phase high-performance liquid chromatography of the dabsyl derivatives. J Chromatogr A 715:67–79

    Article  CAS  Google Scholar 

  • Lee GM, Huard TK, Palsson BO (1989) Effect of serum concentration on hybridoma cell-growth and monoclonal-antibody production at various initial cell densities. Hybridoma 8:369–375

    Article  CAS  Google Scholar 

  • Lin JQ, Takagi M, Qu YB, Gao PJ, Yoshida T (1999) Enhanced monoclonal antibody production by gradual increase of osmotic pressure. Cytotechnology 29:27–33

    Article  CAS  Google Scholar 

  • Ljunggren J, Haggstrom L (1994) Catabolic control of hybridoma cells by glucose and glutamine limited fed-batch cultures. Biotechnol Bioeng 44:808–818

    Article  CAS  Google Scholar 

  • Luan YT, Mutharasan R, Magee WE (1987) Strategies to extend longevity of hybridomas in culture and promote yield of monoclonal-antibodies. Biotechnol Lett 9:691–696

    Article  CAS  Google Scholar 

  • Martens DE, Degooijer CD, Beuvery EC, Tramper J (1992) Effect of serum concentration on hybridoma viable cell-density and production of monoclonal-antibodies in cstrs and on shear sensitivity in airlift loop reactors. Biotechnol Bioeng 39:891–897

    Article  CAS  Google Scholar 

  • Martial-Gros A, Goergen JL, Engasser JM, Marc A (2001) Amino acids metabolism by VO 208 hybridoma cells: some aspects of the culture process and medium composition influence. Cytotechnology 37:93–105

    Article  CAS  Google Scholar 

  • Marx U, Merz W (1995) In vivo and in vitro production of monoclonal antibodies. Bioreactors versus immune ascites. In: Davis WC (ed) Methods in molecular biology, vol 45. Humana Press Inc, Totowa, pp 169–176

    Google Scholar 

  • McCarty K (1962) Selective utilization of amino acids by mammalian cell cultures. Exp Cell Res 27:230–240

    Article  CAS  Google Scholar 

  • Mercille S, Massie B (1994) Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol Bioeng 44:1140–1154

    Article  CAS  Google Scholar 

  • Miller WM, Wilke CR, Blanch HW (1989) Transient responses of hybridoma cells to nutrient additions in continuous culture.1. Glucose pulse and step changes. Biotechnol Bioeng 33:477–486

    Article  CAS  Google Scholar 

  • Morrison GR (1971) Microchemical determination of organic nitrogen with Nessler reagent. Anal Biochem 43:527

    Article  CAS  Google Scholar 

  • Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. Wiley, New York

    Google Scholar 

  • Oh SKW, Vig P, Chua F, Teo WK, Yap MGS (1993) Substantial overproduction of antibodies by applying osmotic-pressure and sodium-butyrate. Biotechnol Bioeng 42:601–610

    Article  CAS  Google Scholar 

  • Oh SKW, Chua FKF, Choo ABH (1995) Intracellular responses of productive hybridomas subjected to high osmotic-pressure. Biotechnol Bioeng 46:525–535

    Article  CAS  Google Scholar 

  • Oyaas K, Berg TM, Bakke O, Levine DW (1989) Hybridoma growth and antibody production under conditions of hyperosmotic stress. In: Spier RE, Griffiths JB, Stephenne J, Crooy PJ (eds) Advances in animal cell biology and technology for bioprocesses. Butterworth, London

    Google Scholar 

  • Ozturk SS, Palsson BO (1991) Effect of medium osmolarity on hybridoma growth, metabolism, and antibody-production. Biotechnol Bioeng 37:989–993

    Article  CAS  Google Scholar 

  • Parampalli A, Eskridge K, Smith L, Meagher MM, Mowry MC, Subramanian A (2007) Development of serum-free media in CHO-DG44 clls using central composite design. Cytotechnology 54:57–68

    Article  CAS  Google Scholar 

  • Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  Google Scholar 

  • Press MF, Sauter G, Bernstein L, Villalobos IE, Mirlacher M, Zhou JY, Wardeh R, Li YT, Guzman R, Ma YL, Sullivan-Halley J, Santiago A, Park JM, Riva A, Slamon DJ (2005) Diagnostic evaluation of HER-2 as a molecular target: an assessment of accuracy and reproducibility of laboratory testing in large, prospective, randomized clinical trials. Clin Cancer Res 11:6598–6607

    Article  CAS  Google Scholar 

  • Repp R, Valerius T, Wieland G, Becker W, Steininger H, Deo Y, Helm G, Gramatzki M, Van de Winkel JG, Lang N (1995) G-CSF-stimulated PMN in immunotherapy of breast cancer with a bispecific antibody to Fc gamma RI and to HER-2/neu (MDX-210). J Hematother 4:415–421

    Article  CAS  Google Scholar 

  • Repp R, van Ojik HH, Valerius T, Groenewegen G, Wieland G, Oetzel C, Stockmeyer B, Becker W, Eisenhut M, Steininger H, Deo YM, Blijham GH, Kalden JR, van de Winkel JGJ, Gramatzki M (2003) Phase I clinical trial of the bispecific antibody MDX-H210 (anti-Fc gamma RI x anti-HER-2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. Br J Cancer 89:2234–2243

    Article  CAS  Google Scholar 

  • Reuveny S, Velez D, Riske F, Macmillan JD, Miller L (1985) Production of monoclonal-antibodies in culture. Dev Biol Stand 60:185–197

    CAS  Google Scholar 

  • Reuveny S, Velez D, Macmillan JD, Miller L (1986) Factors affecting cell-growth and monoclonal-antibody production in stirred reactors. J Immunol Methods 86:53–59

    Article  CAS  Google Scholar 

  • Ryu JS, Lee GM (1997) Influence of hyperosmolar basal media on hybridoma cell growth and antibody production. Bioprocess Eng 16:305–310

    Article  CAS  Google Scholar 

  • Seewoster T, Lehmann J (1995) Influence of targeted asparagine starvation on extra and intracellular amino acid pools of cultivated Chinese hamster ovary cells. Appl Microbiol Biotechnol 44:344–350

    Article  CAS  Google Scholar 

  • Selvarasu S, Kim DY, Karimi IA, Lee DY (2010) Combined data preprocessing and multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for rational medium design. J Biotechnol 150:94–100

    Article  CAS  Google Scholar 

  • Shi T, Eaton AM, Ring DB (1991) Selection of hybrid hybridomas by flow-cytometry using a new combination of fluorescent vital stains. J Immunol Methods 141:165–175

    Article  CAS  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, Press MF (1989) Studies of the Her-2/Neu proto-oncogene in human-breast and ovarian-cancer. Science 244:707–712

    Article  CAS  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  Google Scholar 

  • Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9:269–277

    Article  CAS  Google Scholar 

  • Zhu MM, Goyal A, Rank DL, Gupta SK, Boom TV, Lee SS (2005) Effects of elevated pCO(2) and osmolality on growth of CHO cells and production of antibody-fusion protein B1: a case study. Biotechnol Prog 21:70–77

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Department of Biotechnology (DBT), Govt. of India, New Delhi for providing financial support during the work done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip K. Roychoudhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, S., Roychoudhury, P.K. Development of optimal medium for production of commercially important monoclonal antibody 520C9 by hybridoma cell. Cytotechnology 65, 233–252 (2013). https://doi.org/10.1007/s10616-012-9480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9480-z

Keywords

Navigation