Skip to main content
Log in

An integrated approach to shallow aquifer characterization: combining geophysics and geostatistics

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a method of aquifer characterization that is able to utilize multiple sources of conditioning data to build a more realistic model of heterogeneity. This modeling approach (InMod) uses geophysical data to delineate bounding surfaces within sedimentary deposits. The depositional volumes between bounding surfaces are identified automatically from the geophysical data by a region growing algorithm. Simple geometric rules are used to constrain the growth of the regions in 3-D. The nodes within the depositional volume are assigned to categorical lithologies using geostatistical realizations and a dynamic lookup routine that can be conditioned to field data. The realizations created with this method preserve geologically expected features and produces sharp juxtapositions of high and low hydraulic conductivity lithologies along bounding surfaces. The realizations created with InMod also have higher variance than models created only with geostatistics and honor the volumetric distribution of sediments measured from field data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Annan, A.P.: GPR methods for hydrogeological studies. In: Rubin, Y., Hubbard, S.S. (eds.) Hydrogeophysics, pp. 185–213. Springer, New York (2005)

    Chapter  Google Scholar 

  2. Barrash, W., Clemo, T.: Hierarchical geostatistics and multifacies systems: Boise hydrogeophysical research site, Boise, Idaho. Water Resour. Res. 38(11), 1196 (2002)

    Article  Google Scholar 

  3. Bersezio, R., Giudici, M., Mele, M.: Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy). Sediment. Geol. 202, 230–248 (2007)

    Article  Google Scholar 

  4. Bridge, J.J., Hyndman, D.W.: Aquifer characterization. In: Bridge, J.J., Hyndman, D.W. (eds.) Aquifer Characterization, pp. 1–2. SEPM special publication No. 80 (2004)

  5. Cardenas, M.B., Zlotnik, V.A.: Three-dimensional model of modern channel bend deposits. Water Resour. Res. 39(6), 1141 (2003)

    Article  Google Scholar 

  6. Carle, S.F., Fogg, G.E.: Transition probability-based indicator geostatistics. Math. Geol. 28(4), 453–476 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carle, S.F., Fogg, G.E.: Modeling spatial variability with one and multidimensional continuous-lag markov chains. Math. Geol. 29(7), 891–918 (1997)

    Article  Google Scholar 

  8. Carle, S.F.: T-PROGS: transition probability geostatistical software, users manual version 2.1, p. 84. University of California, Davis (1999)

  9. Close, M.E., Nobes, D.C., Pang L.: Presence of preferential flow paths in shallow groundwater systems as indicated by tracer experiments and geophysical surveys. In: Bridge, J.J., Hyndman, D.W. (eds.) Aquifer Characterization, pp. 79–91. SEPM special publication No. 80 (2004)

  10. Cortis, A., Gallo, C., Scher, H., Berkowitz, B.: Numerical simulation of non-Fickian transport in geological formations with multiple-scale heterogeneities. Water Resour. Res. 40, W04209 (2004)

    Article  Google Scholar 

  11. Dai, X., Ritzi, R.W., Dominic, D.F.: Estimating parameters for hierarchical permeability correlation models. In: Bridge, J.J., Hyndman, D.W. (eds.) Aquifer Characterization, pp. 41–54. SEPM special publication No. 80 (2004)

  12. Deutsch, C.V.: Geostatistical Reservoir Modeling, p. 376. Oxford University Press, New York (2002)

    Google Scholar 

  13. Deutsch, C.V., Journel, A.G.: GSLIB—Geostatistical Software Library Users Guide, p. 384. Oxford University Press, New York (1998)

    Google Scholar 

  14. Engdahl, N.B.: Heterogeneity effects on flow and transport within a shallow fluvial aquifer, p. 199. M.S. Thesis, University of New Mexico, Albuquerque (2009)

  15. Fleckenstein, J.H., Niswonger, R.G., Fogg, G.E.: River-aquifer interactions, geologic heterogeneity, and low-flow management. Ground Water 44(4), 837–852 (2006)

    Article  Google Scholar 

  16. Heinz, J., Kleineidam, S., Teutsch, G., Aigner, T.: Heterogeneity patterns of Quaternary glaciofluvial gravel bodies (SW-Germany): Application to hydrogeology. Sediment. Geol. 158, 1–23 (2003)

    Article  Google Scholar 

  17. Gaud, M.N., Smith, G.A., McKenna, S.A.: Realting small-scale permeability heterogeneity to lithofacies distribution. In: Bridge, J.J., Hyndman, D.W. (eds.) Aquifer Characterization, pp. 55–66. SEPM special publication No. 80 (2004)

  18. Guardiano, F.B., Srivastava, R.M.: Multivariate geostatistics: Beyond bivariate moments. Quant. Geol. Geostat. 5, 133–144 (1993)

    Google Scholar 

  19. Huggenberger, P.: Radar facies: recognition of facies patterns ad heterogeneities within Pleistocene rhine gravels, NE Switzerland. In: Best, C.L., Bristow, C.S. (eds.) Braided Rivers. Geological Society Special Publication, vol. 75, pp. 163–176. Geological Society, London (1993)

  20. Journel, A.G., Huijbregts, Ch.J.: Mining Geostatistics, p. 600. Academic, San Diego (1978)

    Google Scholar 

  21. Knight, R., Tercier,P., Jol, H.: The role of ground penetrating radar and geostatistics in reservoir description. In: The Leading Edge, pp. 1576–1582 (1997)

  22. Koltermann, C.E., Gorelick, S.M.: Heterogeneity in sedimentary deposits: a review of structure-imitating, process-imitating, and descriptive approaches. Water Resour. Res. 32(9), 2617–2658 (1996)

    Article  Google Scholar 

  23. Kowalsky, M.B., Rubin,Y., Dietrich, P.: The use of ground-penetrating radar for characterizing sediments under transient flow conditions. In: Bridge, J.J., Hyndman, D.W. (eds.) Aquifer Characterization, pp. 107–127. SEPM special publication No. 80 (2004)

  24. Lesmes, D.P., Friedman, S.P.: Relationships between the electrical and hydrogeological properties of rocks and soils. In: Rubin, Y., Hubbard, S.S. (eds.) Hydrogeophysics, pp. 87–128. Springer, New York (2005)

    Chapter  Google Scholar 

  25. Levy, M., Berkowitz, B.: Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol. 64, 203–226 (2003)

    Article  Google Scholar 

  26. Lira, J., Frulla, L.: An automated region growing algorithm for segmentation of texture regions in SAR images. Int. J. Remote Sens. 19(18), 3595–3606 (1997)

    Google Scholar 

  27. Lunt, I.A., Bridge, J.S., Tye, R.S.: Development of a 3-D depositional model of braided-river gravels and sands to improve aquifer characterization. In: Bridge, J.J., Hyndman, D.W. (eds.) Aquifer Characterization, pp. 139–169. SEPM special publication No. 80 (2004)

  28. Lunt, I.A., Bridge, J.S., Tye, R.S.: A qualitative, three-dimensional depositional model of gravelly braided rivers. Sedimentology 51, 377–414 (2004)

    Article  Google Scholar 

  29. Mehnert, A., Jackway, P.: An improved seeded region growing algorithm. Pattern Recogn. Lett. 18(10), 1065–1071 (1997)

    Article  Google Scholar 

  30. Neal, A.: Ground-penetrating radar and its use in sedimentology: principles, problems, and progress. Earth Sci. Rev. 66, 261–330 (2004)

    Article  Google Scholar 

  31. Novakovic, D., White, C.D., Corbeanu, R.M., Hammon III, W.S., Bhattacharya, J.P., McMechan, G.A.: Hydraulic effects of shales in fluvial-deltaic deposits: ground-penetrating radar, outcrop observations, geostatistics, and three-dimensional flow modeling for the ferron sandstone, Utah. Math. Geol. 34(7), 857–893 (2002)

    Article  Google Scholar 

  32. Rea, J., Knight, R.: Geostatistical analysis of ground-penetrating radar data: a means of describing spatial variation in the subsurface. Water Resour. Res. 34(3), 329–339 (1998)

    Article  Google Scholar 

  33. Regli, C., Huggenberger, P., Rauber, M.: Interpretation of drill core and georadar data of coarse gravel deposits. J. Hydrol. 255, 234–252 (2002)

    Article  Google Scholar 

  34. Revol-Muller, C., Peyrin, F., Carrillon, Y., Odet, C.: Automated 3D growing algorithm based on an assessment function. Pattern Recogn. Lett. 23(1-3), 137–150 (2002)

    Article  MATH  Google Scholar 

  35. Ritzi, R.W., Behavior of indicator variograms and transition probabilities in relation to the variance in lengths of hydrofacies. Water Resour. Res. 36(11), 3375–3381 (2000)

    Article  Google Scholar 

  36. Rubin, Y., Lunt, I.A., Bridge, J.S.: Spatial variability in river sediments and its link with river channel geometry. Water Resour. Res. 42, W06D16 (2006)

    Article  Google Scholar 

  37. Scheibe, T.D., Freyberg, D.L.: Use of sedimentological information for geometric simulation of natural porous media structure. Water Resour. Res. 31(12), 3259–3270 (1995)

    Article  Google Scholar 

  38. Sensors & Software: Technical Manual 25, Pulse-EKKO 100 Run, User’s Guide v1.2. Sensors and Software, Ontario (1999)

  39. Vandenberghe, J., van Overmeeren, R.A.: Ground penetrating radar images of selected fluvial deposits in the Netherlands. Sediment. Geol. 128, 245–270 (1999)

    Article  Google Scholar 

  40. Wan, S., Higgins, W.E.: Symmetric region growing. IEEE Trans. Image Process. 12(9), 1007–1015 (2003)

    Article  Google Scholar 

  41. Weissmann, G. S., Carle, S.F., Fogg, G.E.: Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics. Water Resour. Res. 35(6), 1761–1770 (1999)

    Article  Google Scholar 

  42. Weissmann, G.S., Fogg, G.E.: Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework. J. Hydrol. 226(1–2), 48–65 (1999)

    Article  Google Scholar 

  43. Weissmann, G.S., Zhang, Y., Fogg, G.E., Mount, J.F.: Influence of incised-valley-fill deposits on hydrogeology of a stream-dominated alluvial fan. In: Bridge, J.J., Hyndman, D.W. (eds.) Aquifer Characterization, pp. 15–28. SEPM special publication No. 80 (2004)

  44. Xu, W., Cumming, I.: A region-growing algorithm for InSAR phase unwrapping. IEEE Trans. Geosci. Remote Sens. 37(1), 124–134 (1999)

    Article  Google Scholar 

  45. Zheng, C., Gorelick, S.M.: Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale. Ground Water 41(2), 142–155 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas B. Engdahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engdahl, N.B., Weissmann, G.S. & Bonal, N.D. An integrated approach to shallow aquifer characterization: combining geophysics and geostatistics. Comput Geosci 14, 217–229 (2010). https://doi.org/10.1007/s10596-009-9145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-009-9145-y

Keywords

Navigation