Skip to main content

Advertisement

Log in

Population genomics applications for conservation: the case of the tropical dry forest dweller Peromyscus melanophrys

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Recent advances in genomic sequencing have opened new horizons in the study of population genetics and evolution in non-model organisms. However, very few population genomic studies have been performed on wild mammals to understand how the landscape affects the genetic structure of populations, useful information for the conservation of biodiversity. Here, we applied a genomic approach to evaluate the relationship between habitat features and genetic patterns at spatial and temporal scales in an endangered ecosystem, the Tropical Dry Forest (TDF). We studied populations of the Plateau deer mouse Peromyscus melanophrys to analyse its genomic diversity and structure in a TDF protected area in the Huautla Mountain Range (HMR), Mexico based on 8209 SNPs obtained through Genotyping-by-Sequencing. At a spatial scale, we found a significant signature of isolation-by-distance, few significant differences in genetic diversity indices among study sites, and no significant differences between habitats with different levels of human perturbation. At a temporal scale, while genetic diversity levels fluctuated significantly over time, neither seasonality nor disturbance levels had a significant effect. Also, outlier analysis revealed loci potentially under selection. Our results suggest that the population genetics of P. melanophrys may be little impacted by anthropogenic disturbances, or by natural spatial and temporal habitat heterogeneity in our study area. The genome-wide approach adopted here provides data of value for conservation planning, and a baseline to be used as a reference for future studies on the effects of habitat fragmentation and seasonality in the HMR and in TDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aars J, Dallas JF, Piertney SB, Marshall F, Gow JL, Telfer S, Lambin X (2006) Widespread gene flow and high genetic variability in populations of water voles Arvicola terrestris in patchy habitats. Mol Ecol 15:1455–1466

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Castañeda ST, Castro-Arellano I, Lacher T, Vázquez-Domínguez E (2008) Peromyscus melanophrys. The IUCN red list of threatened species. Version 2014.2 www.iucnredlist.org. Accessed 29 July 2014

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) Lositan: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform 9:323

    Article  Google Scholar 

  • Aragón EE (2005) Peromyscus melanophrys (Coues 1864). Ratón. In: Ceballos G, Oliva G (coords) Los Mamíferos Silvestres de México. FCE/CONABIO, México, pp 633–634

  • Batisse M (2003) Developing and focusing the biosphere reserve concept. In: Thakur B (ed) Perspectives in resource management in developing countries, concept’s international series in geography 5, vol 1., Resource management: theory and techniquesAshok Kumar Mittal, New Delhi, pp 160–177

    Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B 263:1619–1626

    Article  Google Scholar 

  • Bierne N, Roze D, Welch JJ (2013) Pervasive selection or is it…? Why are F ST outliers sometimes so frequent? Mol Ecol 22:2016–2064

    Article  Google Scholar 

  • Cadena M (2003) Efectos de la perturbación y estacionalidad en la comunidad de roedores en una selva baja caducifolia en Morelos, México. Undergraduate Dissertation, Universidad de Las Américas Puebla

  • Castañeda-Rico S, León-Paniagua L, Ruedas LA, Vázquez-Domínguez E (2011) High genetic diversity and extreme differentiation in the two remaining populations of Habromys simulatus. J Mamm 92:963–973

    Article  Google Scholar 

  • Castañeda-Rico S, León-Paniagua L, Vázquez-Domínguez E, Navarro-Sigüenza AG (2014) Evolutionary diversification and speciation in rodents of the Mexican lowlands: the Peromyscus melanophrys species group. Mol Phylogenet Evol 70:454–463

    Article  PubMed  Google Scholar 

  • Cavia R, Gómez Villafañe IE, Cittadino EA, Bilenca DN, Miño MH, Busch M (2005) Effects of cereal harvest on abundance and spatial distribution of the rodent Akodon azarae in central Argentina. Agric Ecosys Environ 107:95–99

    Article  Google Scholar 

  • Ceballos G, Valenzuela D (2010) Diversidad, ecología y conservación de los vertebrados de Latinoamérica. In: Ceballos G, Martínez L, García A, Espinoza E, Bezaury J, Dirzo R (eds) Diversidad, amenazas y regiones prioritarias para la conservación de las selvas secas del Pacífico de México. FCE, CONABIO, CONANP, Alianza WWF-Telcel, Ecociencia SC and Telmex, México, pp 93–118

    Google Scholar 

  • Ceballos G, Martínez L, García A, Espinoza E, Bezaury J, Dirzo R (2010) Diversidad, amenazas y regiones prioritarias para la conservación de las selvas secas del Pacífico de México. FCE, CONABIO, CONANP, Alianza WWF-Telcel, Ecociencia SC and Telmex, México

    Google Scholar 

  • CONANP (2005) Programa de conservación y manejo Reserva de la Biosfera Sierra de Huautla. Comisión Nacional de Áreas Naturales Protegidas, México

    Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • De León-Ibarra MA (2005) Fenología de especies de plantas con frutos carnosos y disponibilidad espacial y temporal de este recurso en la reserve de la biosfera Sierra de Huautla: Implicaciones para los vertebrados. Dissertation, Universidad Autónoma del Estado de Morelos, Cuernavaca

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63

    Article  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espindola S, Cuarón AD, Gaggiotti OE, Vázquez-Domínguez E (2014) High genetic structure of the Cozumel Harvest mice, a critically endangered island endemic: conservation implications. Conserv Genet 15:1393–1402

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Ezard THG, Travis JMJ (2006) The impact of habitat loss and fragmentation on genetic drift and fixation time. Oikos 114:367–375

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Global Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Foll M, Gaggiotti OE (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Fourcade Y, Chaput-Bardy A, Secondi J, Fleurant C, Lemaire C (2013) Is local selection so widespread in river organisms? Fractal geometry of river networks leads to high bias in outlier detection. Mol Ecol 22:2065–2073

    Article  PubMed  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Gaines MS, Diffendorfer JE, Tamarin RH, Whittam TS (1997) The effects of habitat fragmentation on the genetic structure of small mammal populations. J Hered 88:294–304

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Garduño T, Téllez-Valdés O, Manel S, Vázquez-Domínguez E (2015) Role of habitat heterogeneity and landscape connectivity in shaping gene flow and spatial population structure of a dominant rodent species in a tropical dry forest. J Zool 298:293–302

    Article  Google Scholar 

  • Gaston KJ (2010) Valuing common species. Science 327:154–155

    Article  CAS  PubMed  Google Scholar 

  • Gentry AH (1982) Patterns of Neotropical plant species diversity. Evol Biol 15:1–84

    Google Scholar 

  • Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29

    Article  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kettle CJ (2014) Fragmentation genetics in tropical ecosystems: from fragmentation genetics to fragmentation genomics. Conserv Genet 15:1265–1268

    Article  Google Scholar 

  • Krebs CJ (1966) Demographic changes in fluctuating populations of Microtus californicus. Ecol Monogr 36:239–273

    Article  Google Scholar 

  • Lindenmayer DB, Wood JT, McBurney L, MacGregor C, Youngentob K, Banks SC (2011) How to make a common species rare: a case against conservation complacency. Biol Conserv 144:1663–1672

    Article  Google Scholar 

  • Liu Y, Webber S, Bowgen K, Schmaltz L, Bradley K, Halvarsson P, Abdelgadir M, Griesser M (2013) Environmental factors influence both abundance and genetic diversity in a widespread bird species. Ecol Evol 3:4683–4695

    Article  PubMed  PubMed Central  Google Scholar 

  • Maass M, Búrquez A, Trejo I, Valenzuela D, González MA, Rodríguez M, Arias H (2010) Amenazas. In: Ceballos G, Martínez L, García A, Espinoza E, Bezaury Creel J, Dirzo R (eds) Diversidad, amenazas y regiones prioritarias para la conservación de las selvas secas del Pacífico de México. FCE, CONABIO, CONANP, Alianza WWF-Telcel, Ecociencia SC and Telmex, México, pp 321–346

    Google Scholar 

  • MacSwiney MC, Hernández-Betancourt SF, Panti-May JA, Pech-Canché JM (2012) Ecología poblacional del ratón yucateco Peromyscus yucatanicus (Rodentia: Cricetidae) en las selvas de Quintana Roo, México. In: Cervantes FA, Ballesteros-Barrera C (eds) Estudios sobre la biología de roedores silvestres mexicanos. Instituto de Biología (UNAM), Unidad Iztapalapa (Universidad Autónoma Metropolitana), México, pp 237–246

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505

    Article  Google Scholar 

  • Miller W, Hayes V, Ratan A et al (2011) Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc Natl Acad Sci USA 108:12348–12353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussali-Galante P, Tovar-Sánchez E, Valverde M, Valencia-Cuevas L, Rojas E (2013) Evidence of population genetic effects in Peromyscus melanophrys chronically exposed to mine tailings in Morelos, Mexico. Environ Sci Pollut Res 20:7666–7679

    Article  CAS  Google Scholar 

  • Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quéméré E, Louis EE Jr, Ribéron A, Chikhi L, Crouau-Roy B (2010) Non-invasive conservation genetics of the critically endangered golden-crowned sifaka (Propithecus tattersalli): high diversity and significant genetic differentiation over a small range. Conserv Genet 11:675–687

    Article  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Schug MD, Vessey SH, Korytko AI (1991) Longevity and survival in a population of white-footed mice (Peromyscus leucopus). J Mamm 72:360–366

    Article  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Shafer ABA, Wolf JBW, Alves PC et al (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87

    Article  PubMed  Google Scholar 

  • Sikes RS, Gannon WL (2011) Guidelines of the American society of mammalogists for the use of wild mammals in research. J Mamm 92:235–253

    Article  Google Scholar 

  • Slatkin M (1991) Inbreeding coefficients and coalescence times. Genet Res 58:167–175

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stickel LF (1968) Home range and travels. In: King JA (ed) Biology of Peromyscus (Rodentia), Special Publication No. 2. The American Society of Mammalogists, USA, pp 373–411

  • Tovar-Sánchez E, Cervantes LT, Martínez C, Rojas E, Valverde M, Ortiz-Hernández ML, Mussali-Galante P (2012) Comparison of two wild rodent species as sentinels of environmental contamination by mine tailings. Environ Sci Pollut Res 19:1677–1686

    Article  Google Scholar 

  • Vargas V, Valenzuela-Galván D, Alcalá RE (2012) Is genetic structure of the southern pygmy mouse Baiomys musculus (Cricetidae) related to human-induced spatial landscape heterogeneity in a tropical dry forest? Genetica 140:287–295

    Article  PubMed  Google Scholar 

  • Vázquez-Domínguez E, Piñero D, Ceballos G (1998) Heterozygosity patterning and its relation to fitness components in experimental populations of Liomys pictus from tropical forests in western Mexico. Biol J Linn Soc 65:501–514

    Article  Google Scholar 

  • Vázquez-Domínguez E, Piñero D, Ceballos G (1999) Linking heterozygosity, demography, and fitness of tropical populations of Liomys pictus. J Mamm 80:810–822

    Article  Google Scholar 

  • Vázquez-Domínguez E, Ceballos G, Piñero D (2002) Exploring the relation between genetic structure and habitat heterogeneity in the rodent Liomys pictus from Chamela, Jalisco. Acta Zool Mexicana NS 86:17–29

    Google Scholar 

  • Vázquez-Domínguez E, Mendoza-Martínez A, Orozco-Lugo L, Cuarón AD (2013) High dispersal and generalist habits of the bat Artibeus jamaicensis on Cozumel Island, Mexico: an assessment using molecular genetics. Acta Chiropt 15:411–421

    Article  Google Scholar 

  • Vega R, Vázquez-Domínguez E, Mejía-Puente A, Cuarón AD (2007) Unexpected high levels of genetic variability and the population structure of an island endemic rodent (Oryzomys couesi cozumelae). Biol Conserv 137:210–222

    Article  Google Scholar 

  • White TA, Perkins SE, Heckel G, Searle JB (2013) Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol Ecol 22:2971–2985

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • WWF (2000) The global 200 ecoregions, a user’s guide. WWF, Washington DC

    Google Scholar 

Download references

Acknowledgements

Computations were performed using the Cornell University Biotechnology Resource Center (BRC) and Bioportal (University of Oslo). Trapping was done under permit FAUT-0251 extended to DVG. Valentino Sorani provided data for analysis of satellite images. The Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos (CIByC-UAEM) provided logistical facilities. DVG thanks field assistance of Martín Cadena, Edgard Mason, Evodio Rendón and Amantina Lavalle (CIByC-UAEM). We acknowledge Robert Elshire, Sharon E. Mitchell and Charlotte Acharya (Institute for Genomic Diversity, Cornell University) for their help on Genotyping-by-Sequencing.

Funding

This project was partly funded by the Cornell Center for Comparative and Population Genomics (3CPG), Consejo Nacional de Ciencia y Tecnología (CONACyT; J3490-V), Secretaría de Medio Ambiente-CONACyT (C01-0794) and Programa Volkswagen “Por Amor al Planeta”. RV was funded by the Programa de Becas Postdoctorales, Universidad Nacional Autónoma de México (UNAM). EVD acknowledges financial support from the Instituto de Ecología, UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Vega.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Rodrigo Vega and Ella Vázquez-Domínguez have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega, R., Vázquez-Domínguez, E., White, T.A. et al. Population genomics applications for conservation: the case of the tropical dry forest dweller Peromyscus melanophrys . Conserv Genet 18, 313–326 (2017). https://doi.org/10.1007/s10592-016-0907-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0907-5

Keywords

Navigation