Skip to main content
Log in

A refined convergence analysis of \(\hbox {pDCA}_{e}\) with applications to simultaneous sparse recovery and outlier detection

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider the problem of minimizing a difference-of-convex (DC) function, which can be written as the sum of a smooth convex function with Lipschitz gradient, a proper closed convex function and a continuous possibly nonsmooth concave function. We refine the convergence analysis in Wen et al. (Comput Optim Appl 69, 297–324, 2018) for the proximal DC algorithm with extrapolation (\(\hbox {pDCA}_e\)) and show that the whole sequence generated by the algorithm is convergent without imposing differentiability assumptions in the concave part. Our analysis is based on a new potential function and we assume such a function is a Kurdyka–Łojasiewicz (KL) function. We also establish a relationship between our KL assumption and the one used in Wen et al.  (2018). Finally, we demonstrate how the \(\hbox {pDCA}_e\) can be applied to a class of simultaneous sparse recovery and outlier detection problems arising from robust compressed sensing in signal processing and least trimmed squares regression in statistics. Specifically, we show that the objectives of these problems can be written as level-bounded DC functions whose concave parts are typically nonsmooth. Moreover, for a large class of loss functions and regularizers, the KL exponent of the corresponding potential function are shown to be 1/2, which implies that the \(\hbox {pDCA}_e\) is locally linearly convergent when applied to these problems. Our numerical experiments show that the \(\hbox {pDCA}_e\) usually outperforms the proximal DC algorithm with nonmonotone linesearch (Liu et al. in Math Program, 2018. https://doi.org/10.1007/s10107-018-1327-8, Appendix A) in both CPU time and solution quality for this particular application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The requirement \(h(\bar{\varvec{x}}) < h(\varvec{x})\) is dropped because (21) holds trivially when \(h(\bar{\varvec{x}}) \ge h(\varvec{x})\).

  2. As mentioned before, with this choice of subgradient in Algorithm 1, the algorithm is equivalent to Algorithm 2.

  3. Note that \(\varvec{A}^\top (\varvec{A}\varvec{x}^k - \varvec{z}^{k+1}) = \nabla h({\varvec{x}}^k) - {\varvec{\zeta }}^k + {\varvec{\eta }}^{k+1}\) by our choice of \({\varvec{\zeta }}^k\) in the subproblem (38). Thus, this quantity can be obtained as a by-product when solving (38).

  4. Notice from \(\psi _i(s) = \frac{1}{2}(s-b_i)^2\), (33) and the definition of \(\varvec{z}^{k+1}\) that \(\varvec{A}^\top \varvec{z}^{k+1}\in \partial Q(\varvec{x}^k)\). This together with \({\varvec{\eta }}^{k+1}\in \partial {\mathcal {J}}_2({\varvec{x}}^k)\) and \(g = {\mathcal {J}}_2 + Q\) gives \(\varvec{\zeta }^k\in \partial g(\varvec{x}^k)\).

References

  1. Alfons, A., Croux, C., Gelper, S.: Sparse least trimmed squares regression for analyzing high-dimensional large data sets. Ann. Appl. Stat. 7, 226–248 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions invoving analytic features. Math. Program. 116, 5–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137, 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27, 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146, 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candès, E.J., Wakin, M.B., Boyd, S.P.: Enhancing spasity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14, 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrillo, R.E., Ramirez, A.B., Arce, G.R., Barner, K.E., Sadler, B.M.: Robust compressive sensing of sparse signals: a review. EURASIP J. Adv. Signal Process. 2016, 108 (2016)

    Article  Google Scholar 

  11. Chambolle, A., Dossal, Ch.: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm”. J. Optim. Theory Appl. 166, 968–982 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chartrand, R.: Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14, 707–710 (2007)

    Article  Google Scholar 

  13. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 3869–3872 (2008)

  14. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Foucart, S., Lai, M.J.: Sparsest solutions of underdetermined linear systems via \(\ell _q\)-minimization for \(0 < q \le 1\). Appl. Comput. Harmon. Anal. 26, 395–407 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giloni, A., Padberg, M.: Least trimmed squares regression, least median squares regression, and mathematical programming. Math. Comput. Model. 35, 1043–1060 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gong, P., Zhang, C., Lu, Z., Huang, J., Ye, J.: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. In: International Conference on Machine Learning, pp. 37–45 (2013)

  19. Gotoh, J., Takeda, A., Tono, K.: DC formulations and algorithms for sparse optimization problems. Math. Program. 169, 141–176 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hoeting, J., Raftery, A.E., Madigan, D.: A method for simultaneous variable selection and outlier identification in linear regression. Comput. Stat. Data Anal. 22, 251–270 (1996)

    Article  MATH  Google Scholar 

  21. Li, G., Pong, T.K.: Calculus of the exponent of Kurdyka-Łojasiewicz inequality and its applications to linear convergence of first-order methods. Found. Comput. Math. 18, 1199–1232 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, T., Pong, T.K., Takeda, A.: A successive difference-of-convex approximation method for a class of nonconvex nonsmooth optimization problems. Math. Program. (to appear). https://doi.org/10.1007/s10107-018-1327-8

  23. Loh, P.-L.: Statistical consistency and asymptotic normality for high-dimensional robust M-estimators. Ann. Stat. 45, 866–896 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu, Z., Zhang, Y.: Sparse approximation via penalty decomposition methods. SIAM J. Optim. 23, 2448–2478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Menjoge, R.S., Welsch, R.E.: A diagnostic method for simultaneous feature selection and outlier identification in linear regression. Comput. Stat. Data Anal. 54, 3181–3193 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pham, D.T., Le Thi, H.A.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Math. Vietnam. 22, 289–355 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Pham, D.T., Le Thi, H.A.: A DC optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8, 476–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Polania, L.F., Carrillo, R.E., Blanco-Velasco, M., Barner, K.E.: Compressive sensing for ECG signals in the presence of electromyography noise. In: Proceedings of the 38th Annual Northeast Bioengineering Conference, pp. 295–296 (2012)

  30. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  31. Rousseeuw, P.J.: Regression techniques with high breakdown point. Inst. Math. Stat. Bull. 12, 155 (1983)

    Google Scholar 

  32. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987)

    Book  MATH  Google Scholar 

  33. Saab, R., Chartrand, R., Yilmaz, O.: Stable sparse approximations via nonconvex optimization. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3885–3888 (2008)

  34. She, Y., Owen, A.B.: Outlier detection using nonconvex penalized regression. J. Am. Stat. Assoc. 106, 626–639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Smucler, E., Yohai, V.J.: Robust and sparse estimators for linear regression models. Comput. Stat. Data Anal. 111, 116–130 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tibshirani, R., Taylor, J.: The solution path of the generalized lasso. Ann. Stat. 39, 1335–1371 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tuy, H.: Convex Analysis and Global Optimization. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  38. Wang, Y., Luo, Z., Zhang, X.: New improved penalty methods for sparse reconstruction based on difference of two norms. https://doi.org/10.13140/RG.2.1.3256.3369

  39. Wen, B., Chen, X., Pong, T.K.: Linear convergence of proximal gradient algorithm with extrapolation for a class of nonconvex nonsmooth minimization problems. SIAM J. Optim. 27, 124–145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wen, B., Chen, X., Pong, T.K.: A proximal difference-of-convex algorithm with extrapolation. Comput. Optim. Appl. 69, 297–324 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of \(\ell _{1-2}\) for compressed sensing. SIAM J. Sci. Comput. 37, A536–A563 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38, 894–942 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianxiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ting Kei Pong was supported in part by Hong Kong Research Grants Council PolyU153005/17p. Akiko Takeda was supported in part by JSPS KAKENHI Grant Number 15K00031.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Pong, T.K. & Takeda, A. A refined convergence analysis of \(\hbox {pDCA}_{e}\) with applications to simultaneous sparse recovery and outlier detection. Comput Optim Appl 73, 69–100 (2019). https://doi.org/10.1007/s10589-019-00067-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00067-z

Keywords

Navigation