Skip to main content

Advertisement

Log in

Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Breast Cancer Metastasis Suppressor 1 (BRMS1) suppresses metastasis of human breast cancer, ovarian cancer and melanoma in athymic mice. Studies have also shown that BRMS1 is significantly downregulated in some breast tumors, especially in metastatic disease. However, the mechanisms which regulate BRMS1 expression are currently unknown. Upon examination of the BRMS1 promoter region by methylation specific PCR (MSP) analysis, we discovered a CpG island (−3477 to −2214), which was found to be hypermethylated across breast cancer cell lines. A panel of 20 patient samples analyzed showed that 45% of the primary tumors and 60% of the matched lymph node metastases, displayed hypermethylation of BRMS1 promoter. Furthermore, we found a direct correlation between the methylation status of the BRMS1 promoter in the DNA isolated from tissues, with the loss of BRMS1 expression assessed by immunohistochemistry. There are several studies investigating the mechanism by which BRMS1 suppresses metastasis; however thus far there is no study that reports the cause(s) of loss of BRMS1 expression in aggressive breast cancer. Here we report for the first time that BRMS1 is a novel target of epigenetic silencing; and aberrant methylation in the BRMS1 promoter may serve as a cause of loss of its expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5-aza-dC:

5-Aza-2′-deoxycytidine

BGS:

Bisulfite genomic sequencing

BRMS1:

Breast Cancer Metastasis Suppressor

IDV:

Integrated density value

LN Met:

Metastatic breast cancer cells that metastasized to the lymph node

MSP:

Methylation specific PCR

TE:

Tris–EDTA

References

  1. Shevde LA, Welch DR (2003) Metastasis suppressor pathways—an evolving paradigm. Cancer Lett 198:1–20. doi:10.1016/S0304-3835(03)00304-5

    Article  PubMed  CAS  Google Scholar 

  2. Samant RS, Seraj MJ, Saunders MM, Sakamaki TS, Shevde LA, Harms JF et al (2000) Analysis of mechanisms underlying BRMS1 suppression of metastasis. Clin Exp Metastasis 18:683–693. doi:10.1023/A:1013124725690

    Article  PubMed  CAS  Google Scholar 

  3. Seraj MJ, Samant RS, Verderame MF, Welch DR (2000) Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res 60:2764–2769

    PubMed  CAS  Google Scholar 

  4. Samant RS, Debies MT, Shevde LA, Verderame MF, Welch DR (2002) Identification and characterization of the murine ortholog (brms1) of breast-cancer metastasis suppressor 1 (BRMS1). Int J Cancer 97:15–20. doi:10.1002/ijc.1569

    Article  PubMed  CAS  Google Scholar 

  5. Zhang Z, Yamashita H, Toyama T, Yamamoto Y, Kawasoe T, Iwase H (2006) Reduced expression of the breast cancer metastasis suppressor 1 mRNA is correlated with poor progress in breast cancer. Clin Cancer Res 12:6410–6414. doi:10.1158/1078-0432.CCR-06-1347

    Article  PubMed  CAS  Google Scholar 

  6. Stark AM, Tongers K, Maass N, Mehdorn HM, Held-Feindt J (2005) Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. J Cancer Res Clin Oncol 131:191–198. doi:10.1007/s00432-004-0629-9

    Article  PubMed  CAS  Google Scholar 

  7. Hicks DG, Yoder BJ, Short S, Tarr S, Prescott N, Crowe JP et al (2006) Loss of breast cancer metastasis suppressor 1 protein expression predicts reduced disease-free survival in subsets of breast cancer patients. Clin Cancer Res 12:6702–6708. doi:10.1158/1078-0432.CCR-06-0635

    Article  PubMed  CAS  Google Scholar 

  8. Saunders MM, Seraj MJ, Li Z, Zhou Z, Winter CR, Welch DR et al (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61:1765–1767

    PubMed  CAS  Google Scholar 

  9. Shevde LA, Samant RS, Goldberg SF, Sikaneta T, Alessandrini A, Donahue HJ et al (2002) Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res 273:229–239. doi:10.1006/excr.2001.5452

    Article  PubMed  CAS  Google Scholar 

  10. DeWald DB, Torabinejad J, Samant RS, Johnston D, Erin N, Shope JC et al (2005) Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. Cancer Res 65:713–717

    PubMed  CAS  Google Scholar 

  11. Liu Y, Smith PW, Jones DR (2006) Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase 1-mediated deacetylation of RelA/p65 and promoting apoptosis. Mol Cell Biol 26:8683–8696. doi:10.1128/MCB.00940-06

    Article  PubMed  CAS  Google Scholar 

  12. Cicek M, Fukuyama R, Welch DR, Sizemore N, Casey G (2005) Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-kappaB activity. Cancer Res 65:3586–3595. doi:10.1158/0008-5472.CAN-04-3139

    Article  PubMed  CAS  Google Scholar 

  13. Samant RS, Clark DW, Fillmore RA, Cicek M, Metge BJ, Chandramouli KH et al (2007) Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation. Mol Cancer 6:6. doi:10.1186/1476-4598-6-6

    Article  PubMed  CAS  Google Scholar 

  14. Hurst DR, Mehta A, Moore BP, Phadke PA, Meehan WJ, Accavitti MA et al (2006) Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone. Biochem Biophys Res Commun 348:1429–1435. doi:10.1016/j.bbrc.2006.08.005

    Article  PubMed  CAS  Google Scholar 

  15. Meehan WJ, Samant RS, Hopper JE, Carrozza MJ, Shevde LA, Workman JL et al (2004) Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 279:1562–1569. doi:10.1074/jbc.M307969200

    Article  PubMed  CAS  Google Scholar 

  16. Champine PJ, Michaelson J, Weimer BC, Welch DR, Dewald DB (2007) Microarray analysis reveals potential mechanisms of BRMS1-mediated metastasis suppression. Clin Exp Metastasis 24:551–565. doi:10.1007/s10585-007-9092-8

    Article  PubMed  CAS  Google Scholar 

  17. Cicek M, Samant RS, Kinter M, Welch DR, Casey G (2004) Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells. Clin Exp Metastasis 21:149–157. doi:10.1023/B:CLIN.0000024729.19084.f0

    Article  PubMed  CAS  Google Scholar 

  18. Rivera J, Megias D, Bravo J (2007) Proteomics-based strategy to delineate the molecular mechanisms of the metastasis suppressor gene BRMS1. J Proteome Res 6:4006–4018

    PubMed  CAS  Google Scholar 

  19. Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN et al (2001) Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat 65:101–110. doi:10.1023/A:1006461422273

    Article  PubMed  CAS  Google Scholar 

  20. Miller FR, Santner SJ, Tait L, Dawson PJ (2000) MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst 92:1185–1186. doi:10.1093/jnci/92.14.1185A

    Article  PubMed  CAS  Google Scholar 

  21. Ellison G, Klinowska T, Westwood RF, Docter E, French T, Fox JC (2002) Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol 55:294–299. doi:10.1136/mp. 55.5.294

    Article  PubMed  CAS  Google Scholar 

  22. Rae JM, Ramus SJ, Waltham M, Armes JE, Campbell IG, Clarke R et al (2004) Common origins of MDA-MB-435 cells from various sources with those shown to have melanoma properties. Clin Exp Metastasis 21:543–552. doi:10.1007/s10585-004-3759-1

    Article  PubMed  CAS  Google Scholar 

  23. Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD (2007) MDA-MB-435 cells are derived from M14 melanoma cells–a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104:13–19. doi:10.1007/s10549-006-9392-8

    Article  PubMed  Google Scholar 

  24. Christgen M, Lehmann U (2007) MDA-MB-435: the questionable use of a melanoma cell line as a model for human breast cancer is ongoing. Cancer Biol Ther 6:1355–1357

    Article  PubMed  CAS  Google Scholar 

  25. Sellappan S, Grijalva R, Zhou X, Yang W, Eli MB, Mills GB et al (2004) Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line. Cancer Res 64:3479–3485. doi:10.1158/0008-5472.CAN-3299-2

    Article  PubMed  CAS  Google Scholar 

  26. Welch DR (1997) Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 15:272–306. doi:10.1023/A:1018477516367

    Article  PubMed  CAS  Google Scholar 

  27. Hurst DR, Xie Y, Vaidya KS, Mehta A, Moore BP, Accavitti-Loper MA, Samant RS, Saxena R, Silveira AC, Welch DR (2008) Alterations of breast cancer metastasis suppressor 1:At rich interactive domain 4A interaction modify gene expression but still suppress metastasis in human breast cancer cells. J Biol Chem 283(12):7438–7444

    Article  PubMed  CAS  Google Scholar 

  28. Takai D, Jones PA (2003) The CpG island searcher: a new WWW resource. In Silico Biol 3:235–240

    PubMed  CAS  Google Scholar 

  29. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics (Oxford, England) 18:1427–1431. doi:10.1093/bioinformatics/18.11.1427

    Article  CAS  Google Scholar 

  30. Shevde LA, Samant RS, Paik JC, Metge BJ, Chambers AF, Casey G et al (2006) Osteopontin knockdown suppresses tumorigenicity of human metastatic breast carcinoma, MDA-MB-435. Clin Exp Metastasis 23:123–133. doi:10.1007/s10585-006-9013-2

    Article  PubMed  CAS  Google Scholar 

  31. Hartsough MT, Clare SE, Mair M, Elkahloun AG, Sgroi D, Osborne CK et al (2001) Elevation of breast carcinoma Nm23-H1 metastasis suppressor gene expression and reduced motility by DNA methylation inhibition. Cancer Res 61:2320–2327

    PubMed  CAS  Google Scholar 

  32. Loeb DM, Evron E, Patel CB, Sharma PM, Niranjan B, Buluwela L et al (2001) Wilms’ tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 61:921–925

    PubMed  CAS  Google Scholar 

  33. Evron E, Umbricht CB, Korz D, Raman V, Loeb DM, Niranjan B et al (2001) Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res 61:2782–2787

    PubMed  CAS  Google Scholar 

  34. Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S (2001) Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene 20:3348–3353. doi:10.1038/sj.onc.1204438

    Article  PubMed  CAS  Google Scholar 

  35. Asch BB, Barcellos-Hoff MH (2001) Epigenetics and breast cancer. J Mammary Gland Biol Neoplasia 6:151–152. doi:10.1023/A:1011306222533

    Article  PubMed  CAS  Google Scholar 

  36. Yang X, Yan L, Davidson NE (2001) DNA methylation in breast cancer. Endocr Relat Cancer 8:115–127. doi:10.1677/erc.0.0080115

    Article  PubMed  CAS  Google Scholar 

  37. Jacinto FV, Esteller M (2007) Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis 22:247–253. doi:10.1093/mutage/gem009

    Article  PubMed  CAS  Google Scholar 

  38. Jing F, Zhang J, Tao J, Zhou Y, Jun L, Tang X et al (2007) Hypermethylation of tumor suppressor genes BRCA1, p16 and 14-3-3sigma in serum of sporadic breast cancer patients. Onkologie 30:14–19. doi:10.1159/000096892

    Article  PubMed  CAS  Google Scholar 

  39. Cheng L, Pan CX, Zhang JT, Zhang S, Kinch MS, Li L et al (2004) Loss of 14-3-3sigma in prostate cancer and its precursors. Clin Cancer Res 10:3064–3068. doi:10.1158/1078-0432.CCR-03-0652

    Article  PubMed  CAS  Google Scholar 

  40. Henrique R, Jeronimo C, Hoque MO, Carvalho AL, Oliveira J, Teixeira MR et al (2005) Frequent 14-3-3 sigma promoter methylation in benign and malignant prostate lesions. DNA Cell Biol 24:264–269. doi:10.1089/dna.2005.24.264

    Article  PubMed  CAS  Google Scholar 

  41. Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H et al (2000) High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA 97:6049–6054. doi:10.1073/pnas.100566997

    Article  PubMed  CAS  Google Scholar 

  42. Iwata N, Yamamoto H, Sasaki S, Itoh F, Suzuki H, Kikuchi T et al (2000) Frequent hypermethylation of CpG islands and loss of expression of the 14-3-3 sigma gene in human hepatocellular carcinoma. Oncogene 19:5298–5302. doi:10.1038/sj.onc.1203898

    Article  PubMed  CAS  Google Scholar 

  43. Osada H, Tatematsu Y, Yatabe Y, Nakagawa T, Konishi H, Harano T et al (2002) Frequent and histological type-specific inactivation of 14-3-3sigma in human lung cancers. Oncogene 21:2418–2424. doi:10.1038/sj.onc.1205303

    Article  PubMed  CAS  Google Scholar 

  44. Kaneuchi M, Sasaki M, Tanaka Y, Shiina H, Verma M, Ebina Y et al (2004) Expression and methylation status of 14-3-3 sigma gene can characterize the different histological features of ovarian cancer. Biochem Biophys Res Commun 316:1156–1162. doi:10.1016/j.bbrc.2004.02.171

    Article  PubMed  CAS  Google Scholar 

  45. Lombardi G, Di Cristofano C, Capodanno A, Iorio MC, Aretini P, Isola P et al (2007) High level of messenger RNA for BRMS1 in primary breast carcinomas is associated with poor prognosis. Int J Cancer 120:1169–1178. doi:10.1002/ijc.22379

    Article  PubMed  CAS  Google Scholar 

  46. Kelly LM, Buggy Y, Hill A, O′Donovan N, Duggan C, McDermott EW et al (2005) Expression of the breast cancer metastasis suppressor gene, BRMS1, in human breast carcinoma: lack of correlation with metastasis to axillary lymph nodes. Tumour Biol 26:213–216. doi:10.1159/000086955

    Article  PubMed  CAS  Google Scholar 

  47. Schwientek T, Nomoto M, Levery SB, Merkx G, van Kessel AG, Bennett EP et al (1999) Control of O-glycan branch formation. Molecular cloning of human cDNA encoding a novel beta1, 6-N-acetylglucosaminyltransferase forming core 2 and core 4. J Biol Chem 274:4504–4512. doi:10.1074/jbc.274.8.4504

    Article  PubMed  CAS  Google Scholar 

  48. Campbell IG, Phillips WA, Choong DY (2006) Genetic and epigenetic analysis of the putative tumor suppressor km23 in primary ovarian, breast, and colorectal cancers. Clin Cancer Res 12:3713–3715. doi:10.1158/1078-0432.CCR-06-0800

    Article  PubMed  CAS  Google Scholar 

  49. Gumy-Pause F, Wacker P, Maillet P, Betts DR, Sappino AP (2006) ATM promoter analysis in childhood lymphoid malignancies: a brief communication. Leuk Res 30:335–337. doi:10.1016/j.leukres.2005.07.012

    Article  PubMed  CAS  Google Scholar 

  50. Alvarez S, Diaz-Uriarte R, Osorio A, Barroso A, Melchor L, Paz MF et al (2005) A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation. Clin Cancer Res 11:1146–1153

    PubMed  CAS  Google Scholar 

  51. Hasegawa M, Nelson HH, Peters E, Ringstrom E, Posner M, Kelsey KT (2002) Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene 21:4231–4236. doi:10.1038/sj.onc.1205528

    Article  PubMed  CAS  Google Scholar 

  52. Lu R, Fang JY, Zhu HY, Chen YX, Cheng ZH, Li EL (2004) Effect of eukaryotic expression plasmid DNA methyltransferase gene on methylation status and transcription level of DNA mismatch repair genes in human colon cancer cell line. Zhonghua Yi Xue Za Zhi 84:1014–1017

    Google Scholar 

  53. Wang L, Wang J, Sun S, Rodriguez M, Yue P, Jang SJ et al (2006) A novel DNMT3B subfamily, DeltaDNMT3B, is the predominant form of DNMT3B in non-small cell lung cancer. Int J Oncol 29:201–207

    PubMed  CAS  Google Scholar 

  54. Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3:226–231. doi:10.1016/0959-437X(93)90027-M

    Article  PubMed  CAS  Google Scholar 

  55. Sato M, Horio Y, Sekido Y, Minna JD, Shimokata K, Hasegawa Y (2002) The expression of DNA methyltransferases and methyl-CpG-binding proteins is not associated with the methylation status of p14(ARF), p16(INK4a) and RASSF1A in human lung cancer cell lines. Oncogene 21:4822–4829. doi:10.1038/sj.onc.1205581

    Article  PubMed  CAS  Google Scholar 

  56. Gao Y, Guan M, Su B, Liu W, Xu M, Lu Y (2004) Hypermethylation of the RASSF1A gene in gliomas. Clin Chim Acta 349:173–179. doi:10.1016/j.cccn.2004.07.006

    Article  PubMed  CAS  Google Scholar 

  57. Fang JY, Cheng ZH, Chen YX, Lu R, Yang L, Zhu HY et al (2004) Expression of Dnmt1, demethylase, MeCP2 and methylation of tumor-related genes in human gastric cancer. World J Gastroenterol 10:3394–3398

    PubMed  CAS  Google Scholar 

  58. Steeg PS, Ouatas T, Halverson D, Palmieri D, Salerno M (2003) Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 4:51–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants BCTR0402317 (LAS) and BCTR0503488 (RSS) from Susan G. Komen for the Cure and CA88728 (DRW) and CA89019 (DRW, ARF, LRS, RSS), National Foundation for Cancer Research (DRW, ARF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danny R. Welch or Lalita A. Shevde.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metge, B.J., Frost, A.R., King, J.A. et al. Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin Exp Metastasis 25, 753–763 (2008). https://doi.org/10.1007/s10585-008-9187-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9187-x

Keywords

Navigation