Skip to main content

Advertisement

Log in

Breast cancer progression: insights into multifaceted matrix metalloproteinases

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The restricted view of matrix metalloproteinases (MMPs) as simple destroyers of extracellular matrix components has largely ignored their substantial contribution in many aspects of cancer development and metastatic dissemination. Over the last few years, the relevance of MMPs in the processing of a large array of extracellular and cell surface-associated proteins has grown considerably. Our knowledge about the complex functions of MMPs and how their contribution may differ throughout cancer progression is rapidly expanding. These new findings provide several explanations for the lack of success of MMP inhibition in clinical trials. A complete understanding of MMP biology is needed before considering them, their substrates or their products as therapeutic targets. In this review, we explore the different faces of MMP implication in breast cancer progression by considering both clinical and fundamental aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  2. Lopez-Otin C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:509–519

    Article  PubMed  CAS  Google Scholar 

  3. Overall CM, Tam EM, Kappelhoff R et al (2004) Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors. Biol Chem 385:493–504

    Article  PubMed  CAS  Google Scholar 

  4. Greenlee KJ, Corry DB, Engler DA et al (2006) Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation. J Immunol 177:7312–7321

    PubMed  CAS  Google Scholar 

  5. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  PubMed  CAS  Google Scholar 

  6. Cauwe B, Van den Steen PE, Opdenakker G (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 42:113–185

    Article  PubMed  CAS  Google Scholar 

  7. Overall CM, Dean RA (2006) Degradomics: systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev 25:69–75

    Article  PubMed  Google Scholar 

  8. Noel A, Jost M, Maquoi E (2007) Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol. doi:10.1016/j.semcdb.2077.05.011

    PubMed  Google Scholar 

  9. Noel A, Foidart JM (1998) The role of extracellular matrix and fibroblasts in breast carcinoma growth in vivo. J Mammary Gland Biol Neoplasia 3:215–225

    Article  PubMed  CAS  Google Scholar 

  10. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  11. Shekhar MPV, Pauley R, Heppner G (2003) Host microenvironment in breast cancer development—extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res 5:130–135

    Article  PubMed  CAS  Google Scholar 

  12. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  PubMed  CAS  Google Scholar 

  13. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  14. Balkwill F, Coussens LM (2004) Cancer: an inflammatory link. Nature 431:405–406

    Article  PubMed  CAS  Google Scholar 

  15. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  PubMed  CAS  Google Scholar 

  16. Greenlee KJ, Werb Z, Kheradmand F (2007) Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 87:69–98

    Article  PubMed  CAS  Google Scholar 

  17. Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239

    Article  PubMed  CAS  Google Scholar 

  18. Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C (2004) Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48:411–424

    Article  PubMed  CAS  Google Scholar 

  19. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  PubMed  CAS  Google Scholar 

  20. Oh J, Takahashi R, Kondo S et al (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107:789–800

    Article  PubMed  CAS  Google Scholar 

  21. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727

    Article  PubMed  CAS  Google Scholar 

  22. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  23. Zucker S, Pei D, Cao J, Lopez-Otin C (2003) Membrane type-matrix metalloproteinases (MT-MMP). Curr Top Dev Biol 54:1–74

    Article  PubMed  CAS  Google Scholar 

  24. Zhou Z, Apte SS, Soininen R et al (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA 97:4052–4057

    Article  PubMed  CAS  Google Scholar 

  25. Holmbeck K, Bianco P, Caterina J et al (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81–92

    Article  PubMed  CAS  Google Scholar 

  26. Sato H, Takino T, Okada Y et al (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61–65

    Article  PubMed  CAS  Google Scholar 

  27. Knauper V, Will H, Lopez-Otin C et al (1996) Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem 271:17124–17131

    Article  PubMed  CAS  Google Scholar 

  28. Sounni NE, Noel A (2005) Membrane type-matrix metalloproteinases and tumor progression. Biochimie 87:329–342

    Article  PubMed  CAS  Google Scholar 

  29. Sounni NE, Janssen M, Foidart JM, Noel A (2003) Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis. Matrix Biol 22:55–61

    Article  PubMed  CAS  Google Scholar 

  30. Seiki M, Koshikawa N, Yana I (2003) Role of pericellular proteolysis by membrane-type 1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Metastasis Rev 22:129–143

    Article  PubMed  CAS  Google Scholar 

  31. Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808

    Article  PubMed  CAS  Google Scholar 

  32. Overall CM, McQuibban GA, Clark-Lewis I (2002) Discovery of chemokine substrates for matrix metalloproteinases by exosite scanning: a new tool for degradomics. Biol Chem 383:1059–1066

    Article  PubMed  CAS  Google Scholar 

  33. Radisky DC, Levy DD, Littlepage LE et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127

    Article  PubMed  CAS  Google Scholar 

  34. Manes S, Mira E, Barbacid MD et al (1997) Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem 272:25706–25712

    Article  PubMed  CAS  Google Scholar 

  35. Miyamoto S, Nakamura M, Yano K et al (2007) Matrix metalloproteinase-7 triggers the matricrine action of insulin-like growth factor-II via proteinase activity on insulin-like growth factor binding protein 2 in the extracellular matrix. Cancer Sci 98:685–691

    Article  PubMed  CAS  Google Scholar 

  36. Yu Q, Stamenkovic I (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13:35–48

    Article  PubMed  CAS  Google Scholar 

  37. Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ (2003) Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114:33–45

    Article  PubMed  CAS  Google Scholar 

  38. Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197

    Article  PubMed  CAS  Google Scholar 

  39. Powell WC, Fingleton B, Wilson CL, Boothby M, Matrisian LM (1999) The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol 9:1441–1447

    Article  PubMed  CAS  Google Scholar 

  40. Mitsiades N, Yu WH, Poulaki V, Tsokos M, Stamenkovic I (2001) Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 61:577–581

    PubMed  CAS  Google Scholar 

  41. Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y (2006) Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med 231:20–27

    CAS  Google Scholar 

  42. O’Connell J, Bennett MW, O’Sullivan GC, Collins JK, Shanahan F (1999) The Fas counterattack: cancer as a site of immune privilege. Immunol Today 20:46–52

    Article  PubMed  CAS  Google Scholar 

  43. Boulay A, Masson R, Chenard MP et al (2001) High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res 61:2189–2193

    PubMed  CAS  Google Scholar 

  44. Noe V, Fingleton B, Jacobs K et al (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114:111–118

    PubMed  CAS  Google Scholar 

  45. Gilles C, Newgreen DF, Sato H, Thompson EW (2004) Matrix metalloproteases and epithelial-to-mesenchymal transition: implications for carcinoma metastasis. In: Savagner P (ed) Rise and fall of epithelial phenotype. Kluwer Academic/Plenum Publishers, pp 233–251

  46. Christofori G (2007) Cancer—Division of labour. Nature 446:735–736

    Article  PubMed  CAS  Google Scholar 

  47. van Hinsbergh VW, Engelse MA, Quax PH (2006) Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 26:716–728

    Article  PubMed  CAS  Google Scholar 

  48. Wolf K, Muller R, Borgmann S, Brocker EB, Friedl P (2003) Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102:3262–3269

    Article  PubMed  CAS  Google Scholar 

  49. Hotary K, Li XY, Allen E, Stevens SL, Weiss SJ (2006) A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev 20:2673–2686

    Article  PubMed  CAS  Google Scholar 

  50. Holmbeck K, Bianco P, Yamada S, Birkedal-Hansen H (2004) MT1-MMP: a tethered collagenase. J Cell Physiol 200:11–19

    Article  PubMed  CAS  Google Scholar 

  51. Wolf C, Wu YI, Liu Y et al (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biol 9:893–904

    Article  PubMed  CAS  Google Scholar 

  52. Kajita M, Itoh Y, Chiba T et al (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893–904

    Article  PubMed  CAS  Google Scholar 

  53. Suenaga N, Mori H, Itoh Y, Seiki M (2005) CD44 binding through the hemopexin-like domain is critical for its shedding by membrane-type 1 matrix metalloproteinase. Oncogene 24:859–868

    Article  PubMed  CAS  Google Scholar 

  54. Deryugina EI, Bourdon MA, Jungwirth K, Smith JW, Strongin AY (2000) Functional activation of integrin alpha V beta 3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int J Cancer 86:15–23

    Article  PubMed  CAS  Google Scholar 

  55. Deryugina EI, Ratnikov BI, Postnova TI, Rozanov DV, Strongin AY (2002) Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem 277:9749–9756

    Article  PubMed  CAS  Google Scholar 

  56. Belkin AM, Akimov SS, Zaritskaya LS, Ratnikov BI, Deryugina EI, Strongin AY (2001) Matrix-dependent proteolysis of surface transglutaminase by membrane-type metalloproteinase regulates cancer cell adhesion and locomotion. J Biol Chem 276:18415–18422

    Article  PubMed  CAS  Google Scholar 

  57. Gilles C, Polette M, Coraux C et al (2001) Contribution of MT1-MMP and of human laminin-5 gamma2 chain degradation to mammary epithelial cell migration. J Cell Sci 114:2967–2976

    PubMed  CAS  Google Scholar 

  58. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228

    Article  PubMed  CAS  Google Scholar 

  59. Xu J, Rodriguez D, Petitclerc E et al (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154:1069–1079

    Article  PubMed  CAS  Google Scholar 

  60. Handsley MM, Edwards DR (2005) Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115:849–860

    Article  PubMed  CAS  Google Scholar 

  61. Davis GE, Saunders WB (2006) Molecular balance of capillary tube formation versus regression in wound repair: role of matrix metalloproteinases and their inhibitors. J Invest Dermatol 11:44–56

    Article  CAS  Google Scholar 

  62. Hotary KB, Yana I, Sabeh F et al (2002) Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. J Exp Med 195:295–308

    Article  PubMed  CAS  Google Scholar 

  63. Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 149:1309–1323

    Article  PubMed  CAS  Google Scholar 

  64. Lafleur MA, Handsley MM, Knauper V, Murphy G, Edwards DR (2002) Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci 115:3427–3438

    PubMed  CAS  Google Scholar 

  65. Plaisier M, Kapiteijn K, Koolwijk P et al (2004) Involvement of membrane-type matrix metalloproteinases (MT-MMPs) in capillary tube formation by human endometrial microvascular endothelial cells: role of MT3-MMP. J Clin Endocrinol Metab 89:5828–5836

    Article  PubMed  CAS  Google Scholar 

  66. Deryugina EI, Ratnikov B, Monosov E et al (2001) MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res 263:209–223

    Article  PubMed  CAS  Google Scholar 

  67. Sounni NE, Devy L, Hajitou A et al (2002) MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. FASEB J 16:555–564

    Article  PubMed  CAS  Google Scholar 

  68. Deryugina EI, Soroceanu L, Strongin AY (2002) Up-regulation of vascular endothelial growth factor by membrane-type 1 matrix metalloproteinase stimulates human glioma xenograft growth and angiogenesis. Cancer Res 62:580–588

    PubMed  CAS  Google Scholar 

  69. Noel A, Maillard C, Rocks N et al (2004) Membrane associated proteases and their inhibitors in tumour angiogenesis. J Clin Pathol 57:577–584

    Article  PubMed  CAS  Google Scholar 

  70. Bergers G, Brekken R, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  PubMed  CAS  Google Scholar 

  71. Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y (2002) Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 277:36288–36295

    Article  PubMed  CAS  Google Scholar 

  72. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169:681–691

    Article  PubMed  CAS  Google Scholar 

  73. Chantrain CF, Shimada H, Jodele S et al (2004) Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64:1675–1686

    Article  PubMed  CAS  Google Scholar 

  74. Jodele S, Chantrain CF, Blavier L et al (2005) The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res 65:3200–3208

    PubMed  CAS  Google Scholar 

  75. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051

    PubMed  CAS  Google Scholar 

  76. Masson V, de la Ballina LR, Munaut C et al (2005) Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J 18:234–236

    Google Scholar 

  77. Jost M, Folgueras AR, Frerart F et al (2006) Earlier onset of tumoral angiogenesis in matrix metalloproteinase-19-deficient mice. Cancer Res 66:5234–5241

    Article  PubMed  CAS  Google Scholar 

  78. Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967–3979

    Article  PubMed  CAS  Google Scholar 

  79. Hamano Y, Kalluri R (2005) Tumstatin, the NC1 domain of alpha 3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth. Biochem Biophys Res Commun 333:292–298

    Article  PubMed  CAS  Google Scholar 

  80. Chabottaux V, Noel A (2007) Matrix metalloproteinases to predict breast cancer metastases. Clin Lab Int 31:8–10. http://www.cli-online.com

    Google Scholar 

  81. Duffy MJ, Maguire TM, Hill A, McDermott E, O’Higgins N (2000) Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2:252–257

    Article  PubMed  CAS  Google Scholar 

  82. Martin M, Matrisian L (2004) Matrix metalloproteinases as prognostic factors for cancer. Clin Lab Int 28:16–18. http://www.cli-online.com

    Google Scholar 

  83. Basset P, Bellocq JP, Wolf C et al (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348:699–704

    Article  PubMed  CAS  Google Scholar 

  84. Polette M, Gilbert N, Stas I et al (1994) Gelatinase A expression and localization in human breast cancers. An in situ hybridization study and immunohistochemical detection using confocal microscopy. Virchows Arch 424:641–645

    Article  PubMed  CAS  Google Scholar 

  85. Remacle A, McCarthy K, Noel A et al (2000) High levels of TIMP-2 correlate with adverse prognosis in breast cancer. Int J Cancer 89:118–121

    Article  PubMed  CAS  Google Scholar 

  86. Tetu B, Brisson J, Wang CS et al (2006) The influence of MMP-14, TIMP-2 and MMP-2 expression on breast cancer prognosis. Breast Cancer Res 8:R28

    Article  PubMed  CAS  Google Scholar 

  87. Bisson C, Blacher S, Polette M et al (2003) Restricted expression of membrane type 1-matrix metalloproteinase by myofibroblasts adjacent to human breast cancer cells. Int J Cancer 105:7–13

    Article  PubMed  CAS  Google Scholar 

  88. Jinga D, Stefanescu M, Blidaru A, Condrea I, Pistol G, Matache C (2004) Serum levels of matrix metalloproteinases MMP-2 and MMP-9 and their tissue natural inhibitors in breast tumors. Roum Arch Microbiol Immunol 63:141–158

    PubMed  CAS  Google Scholar 

  89. Turpeenniemi-Hujanen T (2005) Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie 87:287–297

    Article  PubMed  CAS  Google Scholar 

  90. Matrisian LM (1990) Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 6:121–125

    Article  PubMed  CAS  Google Scholar 

  91. Onisto M, Riccio MP, Scannapieco P et al (1995) Gelatinase A/TIMP-2 imbalance in lymph-node-positive breast carcinomas, as measured by RT-PCR. Int J Cancer 63:621–626

    Article  PubMed  CAS  Google Scholar 

  92. Jinga DC, Blidaru A, Condrea I et al (2006) MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: correlations with prognostic factors. J Cell Mol Med 10:499–510

    Article  PubMed  CAS  Google Scholar 

  93. Jiang WG, Davies G, Martin TA et al (2006) Expression of membrane type-1 matrix metalloproteinase, MT1-MMP in human breast cancer and its impact on invasiveness of breast cancer cells. Int J Mol Med 17:583–590

    PubMed  Google Scholar 

  94. Ishigaki S, Toi M, Ueno T et al (1999) Significance of membrane type 1 matrix metalloproteinase expression in breast cancer. Jpn J Cancer Res 90:516–522

    PubMed  CAS  Google Scholar 

  95. Mylona E, Nomikos A, Magkou C et al (2007) The clinicopathological and prognostic significance of membrane type 1 matrix metalloproteinase (MT1-MMP) and MMP-9 according to their localization in invasive breast carcinoma. Histopathology 50:338–347

    Article  PubMed  CAS  Google Scholar 

  96. Talvensaari-Mattila A, Paakko P, Turpeenniemi-Hujanen T (2003) Matrix metalloproteinase-2 (MMP-2) is associated with survival in breast carcinoma. Br J Cancer 89:1270–1275

    Article  PubMed  CAS  Google Scholar 

  97. Jiang WG, Davies G, Martin TA et al (2005) Targeting matrilysin and its impact on tumor growth in vivo: the potential implications in breast cancer therapy. Clin Cancer Res 11:6012–6019

    Article  PubMed  CAS  Google Scholar 

  98. Savinov AY, Remacle AG, Golubkov VS et al (2006) Matrix metalloproteinase 26 proteolysis of the NH2-terminal domain of the estrogen receptor beta correlates with the survival of breast cancer patients. Cancer Res 66:2716–2724

    Article  PubMed  CAS  Google Scholar 

  99. Zucker S, Hymowitz M, Conner C et al (1999) Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Ann N Y Acad Sci 878:212–227

    Article  PubMed  CAS  Google Scholar 

  100. Zucker S, Doshi K, Cao J (2004) Measurement of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMP) in blood and urine: potential clinical applications. Adv Clin Chem 38:37–85

    PubMed  CAS  Google Scholar 

  101. Giannelli G, Erriquez R, Fransvea E et al (2004) Proteolytic imbalance is reversed after therapeutic surgery in breast cancer patients. Int J Cancer 109:782–785

    Article  PubMed  CAS  Google Scholar 

  102. Kuvaja P, Talvensaari-Mattila A, Paakko P, Turpeenniemi-Hujanen T (2006) Low serum level of pro-matrix metalloproteinase 2 correlates with aggressive behavior in breast carcinoma. Hum Pathol 37:1316–1323

    Article  PubMed  CAS  Google Scholar 

  103. Somiari SB, Somiari RI, Heckman CM et al (2006) Circulating MMP2 and MMP9 in breast cancer—potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories. Int J Cancer 119:1403–1411

    Article  PubMed  CAS  Google Scholar 

  104. Somiari SB, Shriver CD, Heckman C et al (2006) Plasma concentration and activity of matrix metalloproteinase 2 and 9 in patients with breast disease, breast cancer and at risk of developing breast cancer. Cancer Lett 233:98–107

    Article  PubMed  CAS  Google Scholar 

  105. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  PubMed  CAS  Google Scholar 

  106. van’t Veer LJ, Dai HY, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  CAS  Google Scholar 

  107. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    Article  PubMed  CAS  Google Scholar 

  108. Gupta GP, Nguyen DX, Chiang AC et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770

    Article  PubMed  CAS  Google Scholar 

  109. Poola I, DeWitty RL, Marshalleck JJ, Bhatnagar R, Abraham J, Leffall LD (2005) Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis. Nat Med 11:481–483

    Article  PubMed  CAS  Google Scholar 

  110. Rio MC (2005) From a unique cell to metastasis is a long way to go: clues to stromelysin-3 participation. Biochimie 87:299–306

    Article  PubMed  CAS  Google Scholar 

  111. Okada A, Bellocq JP, Rouyer N et al (1995) Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA 92:2730–2734

    Article  PubMed  CAS  Google Scholar 

  112. Polette M, Nawrocki B, Gilles C et al (1996) MT-MMP expression and localisation in human lung and breast cancers. Virchows Arch 428:29–35

    Article  PubMed  CAS  Google Scholar 

  113. Ala-Aho R, Kahari VM (2005) Collagenases in cancer. Biochimie 87:273–286

    Article  PubMed  CAS  Google Scholar 

  114. Polette M, Birembaut P (1998) Membrane-type metalloproteinases in tumor invasion. Int J Biochem Cell Biol 30:1195–1202

    Article  PubMed  CAS  Google Scholar 

  115. Brooks PC, Stromblad S, Sanders LC et al (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85:683–693

    Article  PubMed  CAS  Google Scholar 

  116. Ueno H, Nakamura H, Inoue M et al (1997) Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res 57:2055–2060

    PubMed  CAS  Google Scholar 

  117. Mimori K, Ueo H, Shirasaka C, Mori M (2001) Clinical significance of MT1-MMP mRNA expression in breast cancer. Oncol Rep 8:401–403

    PubMed  CAS  Google Scholar 

  118. Yao GY, Yang MT, Rong TH, He P (2004) Significance of membrane type-1 matrix metalloproteinase expression in breast cancer. Ai Zheng 23:1482–1486

    PubMed  Google Scholar 

  119. Jones JL, Glynn P, Walker RA (1999) Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas. J Pathol 189:161–168

    Article  PubMed  CAS  Google Scholar 

  120. Singh M, Johnson L (2006) Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res 12:5312–5328

    Article  PubMed  CAS  Google Scholar 

  121. Shen Q, Brown PH (2005) Transgenic mouse models for the prevention of breast cancer. Mutat Res Fundam Mol Mech Mutagen 576:93–110

    Article  CAS  Google Scholar 

  122. Almholt K, Green KA, Juncker-Jensen A, Nielsen BS, Lund LR, Romer J (2007) Extracellular proteolysis in transgenic mouse models of breast cancer. J Mammary Gland Biol Neoplasia 12:83–97

    Article  PubMed  Google Scholar 

  123. Sternlicht MD, Lochter A, Sympson CJ et al (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98:137–146

    Article  PubMed  CAS  Google Scholar 

  124. Ha HY, Moon HB, Nam MS et al (2001) Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res 61:984–990

    PubMed  CAS  Google Scholar 

  125. Witty JP, Lempka T, Coffey RJ, Matrisian LM (1995) Decreased tumor-formation in 7,12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial-cell apoptosis. Cancer Res 55:1401–1406

    PubMed  CAS  Google Scholar 

  126. Witty EP, Wright JH, Matrisian LM (1995) Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Mol Biol Cell 6:1287–1303

    PubMed  CAS  Google Scholar 

  127. Rudolph-Owen LA, Chan R, Muller WJ, Matrisian LM (1998) The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res 58:5500–5506

    PubMed  CAS  Google Scholar 

  128. Hulboy DL, Gautam S, Fingleton B, Matrisian LM (2004) The influence of matrix metalloproteinase-7 on early mammary tumorigenesis in the multiple intestinal neoplasia mouse. Oncol Rep 12:13–17

    PubMed  CAS  Google Scholar 

  129. Masson R, Lefebvre O, Noel A et al (1998) In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 140:1535–1541

    Article  PubMed  CAS  Google Scholar 

  130. Andarawewa KL, Boulay A, Masson W et al (2003) Dual stromelysin-3 function during natural mouse mammary tumor virus-ras tumor progression. Cancer Res 63:5844–5849

    PubMed  CAS  Google Scholar 

  131. Tester AM, Waltham M, Oh SJ et al (2004) Pro-matrix metalloproteinase-2 transfection increases orthotopic primary growth and experimental metastasis of MDA-MB-231 human breast cancer cells in nude mice. Cancer Res 64:652–658

    Article  PubMed  CAS  Google Scholar 

  132. Noel AC, Lefebvre O, Maquoi E et al (1996) Stromelysin-3 expression promotes tumor take in nude mice. J Clin Invest 97:1924–1930

    Article  PubMed  CAS  Google Scholar 

  133. Noel A, Boulay A, Kebers F et al (2000) Demonstration in vivo that stromelysin-3 functions through its proteolytic activity. Oncogene 19:1605–1612

    Article  PubMed  CAS  Google Scholar 

  134. Sounni NE, Roghi C, Chabottaux V et al (2004) Up-regulation of vascular endothelial growth factor-A by active membrane-type 1 matrix metalloproteinase through activation of Src-tyrosine kinases. J Biol Chem 279:13564–13574

    Article  PubMed  CAS  Google Scholar 

  135. Chabottaux V, Sounni NE, Pennington CJ et al (2006) Membrane-type 4 matrix metalloproteinase promotes breast cancer growth and metastases. Cancer Res 66:5165–5172

    Article  PubMed  CAS  Google Scholar 

  136. Montel V, Kleeman J, Agarwal D, Spinella D, Kawai K, Tarin D (2004) Altered metastatic behavior of human breast cancer cells after experimental manipulation of matrix metalloproteinase 8 gene expression. Cancer Res 64:1687–1694

    Article  PubMed  CAS  Google Scholar 

  137. Noel A, Hajitou A, L’Hoir C et al (1998) Inhibition of stromal matrix metalloproteases: Effects on breast-tumor promotion by fibroblasts. Int J Cancer 76:267–273

    Article  PubMed  CAS  Google Scholar 

  138. Maquoi E, Sounni NE, Devy L et al (2004) Anti-invasive, antitumoral, and antiangiogenic efficacy of a pyrimidine-2,4,6-trione derivative, an orally active and selective matrix metalloproteinases inhibitor. Clin Cancer Res 10:4038–4047

    Article  PubMed  CAS  Google Scholar 

  139. Zhang WY, Matrisian LM, Holmbeck K, Vick CC, Rosenthal EL (2006) Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo. Bmc Cancer 6:52

    Google Scholar 

  140. Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    Article  PubMed  CAS  Google Scholar 

  141. Zigrino P, Loffek S, Mauch C (2005) Tumor-stroma interactions: their role in the control of tumor cell invasion. Biochimie 87:321–328

    Article  PubMed  CAS  Google Scholar 

  142. Foda HD, Zucker S (2001) Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today 6:478–482

    Article  PubMed  CAS  Google Scholar 

  143. Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  PubMed  CAS  Google Scholar 

  144. Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS (2006) The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66:794–802

    Article  PubMed  CAS  Google Scholar 

  145. Liu D, Hornsby PJ (2007) Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 67:3117–3126

    Article  PubMed  CAS  Google Scholar 

  146. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  PubMed  CAS  Google Scholar 

  147. Zucker S, Cao J, Chen WT (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650

    Article  PubMed  CAS  Google Scholar 

  148. Overall CM, Kleifeld O (2006) Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Brit J Cancer 94:941–946

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Union Framework Programme 6 projects, the Fonds National de la Recherche Scientifique (F.N.R.S., Belgium), the Fédération contre le Cancer, the D.G.T.R.E. («Région Wallonne», Belgium) and the Interuniversity Attraction Poles Programme—Belgian Science Policy (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Noel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chabottaux, V., Noel, A. Breast cancer progression: insights into multifaceted matrix metalloproteinases. Clin Exp Metastasis 24, 647–656 (2007). https://doi.org/10.1007/s10585-007-9113-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9113-7

Keywords

Navigation