Skip to main content
Log in

Stability of monocentric and dicentric ring minichromosomes in Arabidopsis

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

A dicentric ring minichromosome (miniδ) was identified in transgenic Arabidopsis thaliana and added to a wild type as a supernumerary chromosome. This line is relatively stable and has been maintained for generations, notwithstanding its ring and dicentric structure. To determine the mechanism for stable transmission of miniδ, the structure and behavior of two new types of ring minichromosomes (miniδ1 and miniδ1-1) derived from miniδ were investigated. Fluorescence in situ hybridization analysis revealed that miniδ1 is dicentric just like miniδ, whereas miniδ1-1 is monocentric. The estimated sizes of miniδ1 and miniδ1-1 were 3.8~5.0 and 1.7 Mb, respectively. The sizes of the two centromeres on miniδ1 were identical (ca. 270 kb) and similar to that of miniδ1-1 (ca. 250 kb). Miniδ1 was relatively stable during mitosis and meiosis, as is miniδ, whereas miniδ1-1 was unstable during mitosis, and the number of minichromosomes per cell varied. This possibly resulted from misdivision caused by a short centromere on monocentric miniδ1-1. Transmission through the female was quite limited for all three ring minichromosomes (0–3.2%), whereas that through the male was relatively high (15.4–27.3%) compared with that of other supernumerary chromosomes in Arabidopsis. Ring structure without telomeres itself seems not to limit the female transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BAC:

bacterial artificial chromosome

CENH3:

centromere-specific histone H3

FISH:

fluorescence in situ hybridization

Mb:

megabase pair

PCR:

polymerase chain reaction

PMC:

pollen mother cell

WT:

wild-type

PFGE:

pulsed-field gel electrophoresis

SBH:

Southern blot hybridization

MI:

Metaphase I

References

  • Alvarez E, Alonso-Blanco C, Suarez RG, Ferreira JJ, Roca A, Giraldez R (1997) A strategy for detecting chromosome-specific rearrangements in rye. Genome 40:451–457

    Article  PubMed  CAS  Google Scholar 

  • Blennow E, Anneren G, Bui TH, Berggren E, Asadi E, Nordenskjold M (1993) Characterization of supernumerary ring marker chromosomes by fluorescence in situ hybridization (FISH). Amer J Med Genet 53:433–442

    Google Scholar 

  • Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD, McCombie WR, Martienssen RA, Marra M, Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474

    Article  PubMed  CAS  Google Scholar 

  • Dubinin NP, Nemtseva LS (1970) The phenomenon of "vesting" in ring chromosomes and its role in the mutation theory and understanding of the mechanism of crossing-over. Proc Nat Acad Sci USA 66:211–217

    Article  PubMed  CAS  Google Scholar 

  • Game JC, Sitney KC, Cook VE, Mortimer RK (1989) Use of a ring chromosome and pulsed-field gels to study interhomolog recombination, double-strand DNA breaks and sister-chromatid exchange in yeast. Genetics 123:695–713

    PubMed  CAS  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    Article  PubMed  CAS  Google Scholar 

  • Han F, Lamb JC, Yu W, Gao Z, Birchler JA (2007) Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell 19:524–533

    Article  PubMed  CAS  Google Scholar 

  • Hinton CW (1955) The behavior of an unstable ring chromosome of Drosophila melanogaster. Genetics 40:951–961

    PubMed  CAS  Google Scholar 

  • Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H (2002) Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res 9:117–121

    Article  PubMed  CAS  Google Scholar 

  • Kaszas E, Birchler JA (1996) Misdivision analysis of centromere structure in maize. Embo J 15:5246–5255

    PubMed  CAS  Google Scholar 

  • Kaszas E, Birchler JA (1998) Meiotic transmission rates correlate with physical features of rearranged centromeres in maize. Genetics 150:1683–1692

    PubMed  CAS  Google Scholar 

  • Kaszas E, Kato A, Birchler JA (2002) Cytological and molecular analysis of centromere misdivision in maize. Genome 45:759–768

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Van der Veen JH (1983) The trisomics of Arabidopsis thaliana (L.) Heynh. and the location of linkage groups. Genetica 61:46–46

    Article  Google Scholar 

  • Lukaszewski AJ (1995) Chromatid and chromosome type breakage-fusion-bridge cycles in wheat (Triticum aestivum L.). Genetics 140:1069–1085

    PubMed  CAS  Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J 1:159–166

    Article  Google Scholar 

  • McClintock B (1932) A correlation of ring-shaped chromosomes with variegation in Zea mays. Proc Natl Acad Sci USA 18:677–681

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315–376

    PubMed  CAS  Google Scholar 

  • McGinniss MJ, Kazazian HH Jr, Stetten G, Petersen MB, Boman H, Engel E, Greenberg F, Hertz JM, Johnson A, Laca Z et al (1992) Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21. Amer J Human Genet 50:15–28

    CAS  Google Scholar 

  • Murakami S, Yanagida M, Niwa O (1995) A large circular minichromosome of Schizosaccharomyces pombe requires a high dose of type II DNA topoisomerase for its stabilization. Mol Gen Genet 246:671–679

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Motoyoshi F (1995) Floral chromosomes of Arabidopsis thaliana for detecting low-copy DNA sequences by fluorescence in situ hybridization. Chromosoma 104:39–43

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Ogura Y, Motoyoshi F (1994) Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet 69:361–370

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Heslop-Harrison JS, Motoyoshi F (1997) Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. Plant J 12:31–37

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Yokota E, Shibata F, Kashihara K (2008) Functional analysis of the Arabidopsis centromere by T-DNA insertion-induced centromere breakage. Proc Nat Acad Sci USA 105:7511–7516

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225

    PubMed  CAS  Google Scholar 

  • Naito T, Matsuura A, Ishikawa F (1998) Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nature Genet 20:203–206

    Article  PubMed  CAS  Google Scholar 

  • Nakamura TM, Cooper JP, Cech TR (1998) Two modes of survival of fission yeast without telomerase. Science 282:493–496

    Article  PubMed  CAS  Google Scholar 

  • Pinto MR, Fonseca e Silva ML, Aguiar J, Quelhas I, Lima MRJ (2005) Supernumerary ring chromosome 20 in a mother and her child. Amer J Med Genet 133A:193–196

    Google Scholar 

  • Ross KJ, Fransz P, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4:507–516

    Article  PubMed  CAS  Google Scholar 

  • Sears, LMS, Lee-Chen S (1970) Cytogenetic studies in Arabidopsis thaliana. Can J Genet Cytol 12:217–223

    Google Scholar 

  • Shibata F, Murata M (2004) Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117:2963–2970

    Article  PubMed  CAS  Google Scholar 

  • Spence JM, Mills W, Mann K, Huxley C, Farr CJ (2006) Increased missegregation and chromosome loss with decreasing chromosome size in vertebrate cells. Chromosoma 115:60–74

    Article  PubMed  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Traverse KL, Pardue ML (1988) A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres. Proc Nat Acad Sci USA 85:8116–8120

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan BA, Stetten G, Gimelli G, Warburton D, Tyler-Smith C, Sullivan KF, Poirier GG, Earnshaw WC (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904

    Google Scholar 

  • Warmington JR, Anwar R, Newlon CS, Waring RB, Davies RW, Indge KJ, Oliver SG (1986) A ‘hot-spot’ for Ty transposition on the left arm of yeast chromosome III. Nucleic Acids Res 14:3475–3485

    Article  PubMed  CAS  Google Scholar 

  • Wong C, Kazazian HH Jr, Stetten G, Earnshaw WC, Van Keuren ML, Antonarakis SE (1989) Molecular mechanism in the formation of a human ring chromosome 21. Proc Nat Acad Sci USA 86:1914–1918

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, Nagaki K, Murata M (2010) Minichromosome stability induced by partial genome duplication in Arabidopsis thaliana. Chromosoma 119:361–369

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to K. Kashihara for technical assistance. This work was supported by Promotion of Basic Research Activities for Innovative Biosciences, BRAIN, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Murata.

Additional information

Responsible Editor: Pat Heslop-Harisson.

Electronic supplement material

Below is the link to the electronic supplementary material.

Table S1

DNA probes for FISH and their primer set and templates for PCR amplification (DOC 36 kb)

Table S2

Primers designed from the F3C11 BAC sequence for amplifying the fused region with the ATH180F (Table S1) primer, and size of PCR fragments (DOC 29.5 kb)

Table S3

Centromere sizes of three minichromosomes, estimated by direct FISH probed with the 180-bp repeats and Adobe Photoshop 5 Extended (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokota, E., Shibata, F., Nagaki, K. et al. Stability of monocentric and dicentric ring minichromosomes in Arabidopsis . Chromosome Res 19, 999–1012 (2011). https://doi.org/10.1007/s10577-011-9250-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-011-9250-3

Keywords

Navigation