Skip to main content
Log in

Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

During meiosis, a single round of genome duplication is followed by two sequential rounds of chromosome segregation. Through this process, a diploid parent cell generates gametes with a haploid set of chromosomes. A characteristic of meiotic chromosome segregation is a stepwise loss of sister chromatid cohesion along chromosomal arms and at centromeres. Whereas arm cohesion plays an important role in ensuring homologue disjunction at meiosis I, persisting cohesion at pericentromeric regions throughout meiosis I is essential for the faithful equational segregation of sisters in the following meiosis II, similar to mitosis. A widely conserved pericentromeric protein called shugoshin, which associates with protein phosphatase 2A (PP2A), plays a critical role in this protection of cohesin. Another key aspect of meiosis I is the establishment of monopolar attachment of sister kinetochores to spindle microtubules. Cohesion or physical linkage at the core centromeres, where kinetochores assemble, may conjoin sister kinetochores, leading to monopolar attachment. A meiosis-specific kinetochore factor such as fission yeast Moa1 or budding yeast monopolin contributes to this regulation. We propose that cohesion at the core centromere and pericentromeric regions plays distinct roles, especially in defining the orientation of kinetochores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CK1δ/ɛ:

casein kinase 1 δ/ɛ

HP1:

heterochromatin protein 1

MCAK:

mitotic centromere-associated kinesin

MEF:

mouse embryonic fibroblast

PP2A:

protein phosphatase 2A

SMC:

structural maintenance of chromosome

References

  • Bernard P, Maure JF, Javerzat JP (2001) Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation. Nat Cell Biol 3:522–526

    Article  PubMed  CAS  Google Scholar 

  • Brar GA, Kiburz BM, Zhang Y, Kim JE, White F, Amon A (2006) Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 441:532–536

    Article  PubMed  CAS  Google Scholar 

  • Chelysheva L, Diallo S, Vezon D et al (2005) AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 118:4621–4632

    Article  PubMed  CAS  Google Scholar 

  • Clyne RK, Katis VL, Jessop L et al (2003) Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nat Cell Biol 5:480–485

    Article  PubMed  CAS  Google Scholar 

  • Davis BK (1971) Genetic analysis of a meiotic mutant resulting in precocious sister-centromere separation in Drosophila melanogaster. Mol Gen Genet 113:251–272

    Article  PubMed  CAS  Google Scholar 

  • DeVeaux LC, Smith GR (1994) Region-specific activators of meiotic recombination in Schizosaccharomyces pombe. Genes Dev 8:203–210

    Article  PubMed  CAS  Google Scholar 

  • Gandhi R, Gillespie PJ, Hirano T (2006) Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr Biol 16:2406–2417

    Article  PubMed  CAS  Google Scholar 

  • Goldstein LS (1981) Kinetochore structure and its role in chromosome orientation during the first meiotic division in male D. melanogaster. Cell 25:591–602

    Article  PubMed  CAS  Google Scholar 

  • Gregan J, Riedel CG, Pidoux AL et al (2007) The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation. Curr Biol 17:1190–1200

    Article  PubMed  CAS  Google Scholar 

  • Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K (2008) The cohesin ring concatenates sister DNA molecules. Nature 454:297–301

    Article  PubMed  CAS  Google Scholar 

  • Hauf S, Waizenegger IC, Peters JM (2001) Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293:1320–1323

    Article  PubMed  CAS  Google Scholar 

  • Hauf S, Roitinger E, Koch B, Dittrich CM, Mechtler K, Peters JM (2005) Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. Plos Biol 3:e69

    Article  PubMed  Google Scholar 

  • Hauf S, Biswas A, Langegger M, Kawashima SA, Tsukahara T, Watanabe Y (2007) Aurora controls sister kinetochore mono-orientation and homolog bi-orientation in meiosis-I. EMBO J 26:4475–4486

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Feng J, Famulski J et al (2007) Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J Cell Biol 177:413–424

    Article  PubMed  CAS  Google Scholar 

  • Indjeian VB, Stern BM, Murray AW (2005) The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307:130–133

    Article  PubMed  CAS  Google Scholar 

  • Kawashima SA, Tsukahara T, Langegger M, Hauf S, Kitajima TS, Watanabe Y (2007) Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev 21:420–435

    Article  PubMed  CAS  Google Scholar 

  • Kerrebrock AW, Miyazaki WY, Birnby D, Orr-Weaver TL (1992) The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation. Genetics 130:827–841

    PubMed  CAS  Google Scholar 

  • Kerrebrock AW, Moore DP, Wu JS, Orr-Weaver TL (1995) MEI-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell 83:247–256

    Article  PubMed  CAS  Google Scholar 

  • Kiburz BM, Reynolds DB, Megee PC et al (2005) The core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I. Genes Dev 19:3017–3030

    Article  PubMed  CAS  Google Scholar 

  • Kitajima TS, Kawashima SA, Watanabe Y (2004) The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427:510–517

    Article  PubMed  CAS  Google Scholar 

  • Kitajima TS, Hauf S, Ohsugi M, Yamamoto T, Watanabe Y (2005) Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr Biol 15:353–359

    Article  PubMed  CAS  Google Scholar 

  • Kitajima TS, Sakuno T, Ishiguro K et al (2006) Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441:46–52

    Article  PubMed  CAS  Google Scholar 

  • Klein F, Mahr P, Galova M et al (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, recombination during yeast meiosis. Cell 98:91–103

    Article  PubMed  CAS  Google Scholar 

  • Kueng S, Hegemann B, Peters BH et al (2006) Wapl controls the dynamic association of cohesin with chromatin. Cell 127:955–967

    Article  PubMed  CAS  Google Scholar 

  • Lee BH, Amon A (2003) Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300:482–486

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Miyano T, Dai Y, Wooding P, Yen TJ, Moor RM (2000) Specific regulation of CENP-E and kinetochores during meiosis I/meiosis II transition in pig oocytes. Mol Rep Dev 56:51–62

    Article  CAS  Google Scholar 

  • Lee J, Kitajima TS, Tanno Y et al (2008) Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol 10:42–52

    Article  PubMed  CAS  Google Scholar 

  • Llano E, Gomez R, Gutierrez-Caballero C et al (2008) Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes Dev 22:2400–2413

    Article  PubMed  CAS  Google Scholar 

  • Lorenz A, Wells JL, Pryce DW et al (2004) S pombe meiotic linear elements contain proteins related to synaptonemal complex components. J Cell Sci 117:3343–3351

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Hirano M, Hirano T (2002) Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev 16:3004–3016

    Article  PubMed  CAS  Google Scholar 

  • Mailhes JB, Hilliard C, Fuseler JW, London SN (2003) Okadaic acid, an inhibitor of protein phosphatase 1 and 2A, induces premature separation of sister chromatids during meiosis I and aneuploidy in mouse oocytes in vitro. Chromosome Res 11:619–631

    Article  PubMed  CAS  Google Scholar 

  • Marston AL, Tham WH, Shah H, Amon A (2004) A genome-wide screen identifies genes required for centromeric cohesion. Science 303:1367–1370

    Article  PubMed  CAS  Google Scholar 

  • McGuinness BE, Hirota T, Kudo NR, Peters JM, Nasmyth K (2005) Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. Plos Biol 3:e86

    Article  PubMed  Google Scholar 

  • Monje-Casas F, Prabhu VR, Lee BH, Boselli M, Amon A (2007) Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128:477–490

    Article  PubMed  CAS  Google Scholar 

  • Moore DP, Orr-Weaver TL (1998) Chromosome segregation during meiosis: building an unambivalent bivalent. Curr Top Dev Biol 37:263–299

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (2001) Disseminating the genome: joining, resolving, separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35:673–745

    Article  PubMed  CAS  Google Scholar 

  • Nicklas RB (1997) How cells get the right chromosomes. Science 275:632–637

    Article  PubMed  CAS  Google Scholar 

  • Parisi S, McKay MJ, Molnar M et al (1999) Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol 19:3515–3528

    PubMed  CAS  Google Scholar 

  • Parra MT, Viera A, Gomez R et al (2004) Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 117:1221–1234

    Article  PubMed  CAS  Google Scholar 

  • Petronczki M, Matos J, Mori S et al (2006) Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell 126:1049–1064

    Article  PubMed  CAS  Google Scholar 

  • Rabitsch KP, Petronczki M, Javerzat JP et al (2003) Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. Dev Cell 4:535–548

    Article  PubMed  CAS  Google Scholar 

  • Rabitsch KP, Gregan J, Schleiffer A, Javerzat JP, Eisenhaber F, Nasmyth K (2004) Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr Biol 14:287–301

    PubMed  CAS  Google Scholar 

  • Riedel CG, Katis VL, Katou Y et al (2006) Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441:53–61

    Article  PubMed  CAS  Google Scholar 

  • Sumara I, Vorlaufer E, Stukenberg PT et al (2002) The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell 9:515–525

    Article  PubMed  CAS  Google Scholar 

  • Tanaka TU (2002) Bi-orienting chromosomes on the mitotic spindle. Curr Opni Cell Biol 14:365–371

    Article  CAS  Google Scholar 

  • Tang Z, Sun Y, Harley SE, Zou H, Yu H (2004) Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proc Natl Acad Sci U S A 101:18012–18017

    Article  PubMed  CAS  Google Scholar 

  • Tang Z, Shu H, Qi W, Mahmood NA, Mumby MC, Yu H (2006) PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev Cell 10:575–585

    Article  PubMed  CAS  Google Scholar 

  • Toth A, Rabitsch KP, Galova M, Schleiffer A, Buonomo SB, Nasmyth K (2000) Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103:1155–1168

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann F (2003) Chromosome cohesion and separation: from men and molecules. Curr Biol 13:R104–114

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y (2006) A one-sided view of kinetochore attachment in meiosis. Cell 126:1030–1032

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400:461–464

    Article  PubMed  CAS  Google Scholar 

  • Winey M, Morgan GP, Straight PD, Giddings TH Jr, Mastronarde DN (2005) Three-dimensional ultrastructure of Saccharomyces cerevisiae meiotic spindles. Mol Biol Cell 16:1178–1188

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi Y, Sakuno T, Shimura M, Watanabe Y (2008) Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455:251–255

    Article  PubMed  CAS  Google Scholar 

  • Yokobayashi S, Watanabe Y (2005) The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123:803–817

    Article  PubMed  CAS  Google Scholar 

  • Yokobayashi S, Yamamoto M, Watanabe Y (2003) Cohesins determine the attachment manner of kinetochores to spindle microtubules at meiosis I in fission yeast. Mol Cell Biol 23:3965–3973

    Article  PubMed  CAS  Google Scholar 

  • Yu HG, Dawe RK (2000) Functional redundancy in the maize meiotic kinetochore. J Cell Biol 151:131–142

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to those researchers whose work was not cited or discussed owing to space limitations. This work was supported in part by a Special Coordination Funds for Promoting Science and Technology (to T.S.) and a Grant-in-Aid for Specially Promoted Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to Y.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Watanabe.

Additional information

Responsible Editor: Christian H. Haering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuno, T., Watanabe, Y. Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions. Chromosome Res 17, 239–249 (2009). https://doi.org/10.1007/s10577-008-9013-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-9013-y

Keywords

Navigation