Skip to main content

Advertisement

Log in

Lentiviral Modulation of Wnt/β-Catenin Signaling Affects In Vivo LTP

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Wnt signaling is involved in hippocampal development and synaptogenesis. Numerous recent studies have been focused on the role of Wnt ligands in the regulation of synaptic plasticity. Inhibitors and activators of canonical Wnt signaling were demonstrated to decrease or increase, respectively, in vitro long-term potentiation (LTP) maintenance in hippocampal slices (Chen et al. in J Biol Chem 281:11910–11916, 2006; Vargas et al. in J Neurosci 34:2191–2202, 2014, Vargas et al. in Exp Neurol 264:14–25, 2015). Using lentiviral approach to down- and up-regulate the canonical Wnt signaling, we explored whether Wnt/β-catenin signaling is critical for the in vivo LTP. Chronic suppression of Wnt signaling induced an impairment of in vivo LTP expression 14 days after lentiviral suspension injection, while overexpression of Wnt3 was associated with a transient enhancement of in vivo LTP magnitude. Both effects were related to the early phase LTP and did not affect LTP maintenance. A loss-of-function study demonstrated decreased initial paired pulse facilitation ratio, β-catenin, and phGSK-3β levels. A gain-of-function study revealed not only an increase in PSD-95, β-catenin, and Cyclin D1 protein levels, but also a reduced phGSK-3β level and enhanced GSK-3β kinase activity. These results suggest a presynaptic dysfunction predominantly underlying LTP impairment while postsynaptic modifications are primarily involved in transient LTP amplification. This study is the first demonstration of the involvement of Wnt/β-catenin signaling in synaptic plasticity regulation in an in vivo LTP model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad-Annuar A, Ciani L, Simeonidis I, Herreros J, Fredj NB, Rosso SB, Hall A, Brickley S, Salinas PC (2006) Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol 174:127–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amendola D, De Salvo M, Marchese R, Verga Falzacappa C, Stigliano A, Carico E, Brunetti E, Moscarini M, Bucci B (2009) Myc down-regulation affects cyclin D1/cdk4 activity and induces apoptosis via Smac/Diablo pathway in an astrocytoma cell line. Cell Prolif 42:94–109

    Article  CAS  PubMed  Google Scholar 

  • Anderton BH, Dayanandan R, Killick R, Lovestone S (2000) Does dysregulation of the Notch and wingless/Wnt pathways underlie the pathogenesis of Alzheimer’s disease? Mol Med Today 6:54–59

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Taketo MM (2008) Tissue-specific transgenic, conditional knockout and knock-in mice of genes in the canonical Wnt signaling pathway. Methods Mol Biol 468:307–331

    Article  CAS  PubMed  Google Scholar 

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 101:2173–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Boonen RA, van Tijn P, Zivkovic D (2009) Wnt signaling in Alzheimer’s disease: up or down, that is the question. Ageing Res Rev 8:71–82

    Article  CAS  PubMed  Google Scholar 

  • Cerpa W, Godoy JA, Alfaro I, Farias GG, Metcalfe MJ, Fuentealba R, Bonansco C, Inestrosa NC (2008) Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283:5918–5927

    Article  CAS  PubMed  Google Scholar 

  • Cerpa W, Gambrill A, Inestrosa NC, Barria A (2011) Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J Neurosci 31:9466–9471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RH, Ding WV, McCormick F (2000) Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase C. J Biol Chem 275:17894–17899

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Park CS, Tang SJ (2006) Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem 281:11910–11916

    Article  CAS  PubMed  Google Scholar 

  • Chew B, Ryu JR, Ng T, Ma D, Dasgupta A, Neo SH, Zhao J, Zhong Z, Bichler Z, Sajikumar S, Goh EL (2015) Lentiviral silencing of GSK-3β in adult dentate gyrus impairs contextual fear memory and synaptic plasticity. Front Behav Neurosci 9:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6:351–362

    Article  CAS  PubMed  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  • Corcoran A, Kunze R, Harney SC, Breier G, Marti HH, O’Connor JJ (2013) A role for prolyl hydroxylase domain proteins in hippocampal synaptic plasticity. Hippocampus 23:861–872

    Article  CAS  PubMed  Google Scholar 

  • De Ferrari GV, Inestrosa NC (2000) Wnt signaling function in Alzheimer’s disease. Brain Res Rev 33:1–12

    Article  PubMed  Google Scholar 

  • De Ferrari GV, Moon RT (2006) The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 25:7545–7553

    Article  PubMed  Google Scholar 

  • Dobryakova YV, Gurskaya O, Markevich VA (2014) Participation of muscarinic receptors in memory consolidation in passive avoidance learning. Acta Neurobiol Exp 74:211–217

    Google Scholar 

  • Dobryakova YV, Gurskaya OY, Markevich VA (2015) Administration of nicotinic receptor antagonists during the period of memory consolidation affects passive avoidance learning and modulates synaptic efficiency in the CA1 region in vivo. Neuroscience 284:865–871

    Article  CAS  PubMed  Google Scholar 

  • Du Q, Park KS, Guo Z, He P, Nagashima M, Shao L, Sahai R, Geller DA, Hussain SP (2006) Regulation of human nitric oxide synthase 2 expression by Wnt beta-catenin signaling. Cancer Res 66(14):7024–7031

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich I, Malinow R (2004) Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci 24:916–927

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich I, Klein M, Rumpel S, Malinow R (2007) PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci USA 104:4176–4181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farías GG, Vallés AS, Colombres M, Godoy JA, Toledo EM, Lukas RJ, Barrantes FJ, Inestrosa NC (2007) Wnt-7a induces presynaptic colocalization of alpha 7-nicotinic acetylcholine receptors and adenomatous polyposis coli in hippocampal neurons. J Neurosci 27:5313–5325

    Article  PubMed  Google Scholar 

  • Fortress AM, Schram SL, Tuscher JJ, Frick KM (2013) Canonical Wnt signaling is necessary for object recognition memory consolidation. J Neurosci 33:12619–12626

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Castro MI, Marcelle C, Bronner-Fraser M (2002) Ectodermal Wnt function as a neural crest inducer. Science 297:848–851

    CAS  PubMed  Google Scholar 

  • Genoux D, Bezerra P, Montgomery JM (2011) Intra-spaced stimulation and protein phosphatase 1 dictate the direction of synaptic plasticity. Eur J Neurosci 33:1761–1770

    Article  PubMed  Google Scholar 

  • Goda Y (2002) Cadherins communicate structural plasticity of presynaptic and postsynaptic terminals. Neuron 35:1–3

    Article  CAS  PubMed  Google Scholar 

  • Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100:525–535

    Article  CAS  PubMed  Google Scholar 

  • Han SM, Wan H, Kudo G, Foltz WD, Vines DC, Green DE, Zoerle T, Tariq A, Brathwaite S, D’Abbondanza J, Ai J, Macdonald RL (2014) Molecular alterations in the hippocampus after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 34:108–117

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RD, Son H, Arancio O (1998) Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog Brain Res 118:155–172

    Article  CAS  PubMed  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Hernandez F, Borrell J, Guaza C, Avila J, Lucas JJ (2002) Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. J Neurochem 83:1529–1533

    Article  CAS  PubMed  Google Scholar 

  • Hodar C, Assar R, Colombres M, Aravena A, Pavez L, Gonzalez M, Martinez S, Inestrosa NC, Maass A (2010) Genome-wide identification of new Wnt/beta-catenin target genes in the human genome using CART method. BMC Genom 11:348

    Article  Google Scholar 

  • Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, Hernandez F, Anderton B, Rosenblum K, Bliss T, Cooke SF, Avila J, Lucas JJ, Giese KP, Stephenson J, Lovestone S (2007) Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 25:81–86

    Article  PubMed  Google Scholar 

  • Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppler S, Brown JD, Moon RT (1996) Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev 10:2805–2817

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Huang HZ, Wang X, Xie AJ, Wang X, Liu D, Wang JZ, Zhu LQ (2015) Activation of glycogen synthase kinase-3 mediates the olfactory deficit-induced hippocampal impairments. Mol Neurobiol 52:1601–1617

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11:77–86

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa N, De Ferrari GV, Garrido JL, Alvarez A, Olivares GH, Barria MI, Bronfman M, Chacon MA (2002) Wnt signaling involvement in beta-amyloid-dependent neurodegeneration. Neurochem Int 41:341–344

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AD, Tukhbatova GR, Salozhin SV, Markevich VA (2015) NGF but not BDNF overexpression protects hippocampal LTP from beta-amyloid-induced impairment. Neuroscience 289:114–122

    Article  CAS  PubMed  Google Scholar 

  • Jessberger S, Clark RE, Broadbent NJ, Clemenson GD Jr, Consiglio A, Lie DC, Squire LR, Gage FH (2009) Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem 16:147–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Jing L, Duan TT, Tian M, Yuan Q, Tan JW, Zhu YY, Ding ZY, Cao J, Yang YX, Zhang X, Mao RR, Richter-Levin G, Zhou QX (2015) Xu L (2015) Despair-associated memory requires a slow-onset CA1 long-term potentiation with unique underlying mechanisms. Sci Rep. 5:15000. doi:10.1038/srep15000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32:577–595

    Article  CAS  PubMed  Google Scholar 

  • Kleschevnikov AM, Sokolov MV, Kuhnt U, Dawe GS, Stephenson JD, Voronin LL (1997) Changes in paired-pulse facilitation correlate with induction of long-term potentiation in area CA1 of rat hippocampal slices. Neuroscience 76:829–843

    Article  CAS  PubMed  Google Scholar 

  • Larkman A, Hannay T, Stratford K, Jack J (1992) Presynaptic release probability influences the locus of long-term potentiation. Nature 360(6399):70–73

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Son GH, Chung S, Lee S, Kim J, Choi S, Kim K (2011) Impairment of fear memory consolidation in maternally stressed male mouse offspring: evidence for nongenomic glucocorticoid action on the amygdala. J Neurosci 31:7131–7140

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li X, Chen W, Yu S, Chen J, Wang H, Ruan D (2007) The different roles of cyclinD1-CDK4 in STP and mGluR-LTD during the postnatal development in mice hippocampus area CA1. BMC Dev Biol 7:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao D, Jones A, Malinow R (1992) Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus. Neuron 9(6):1089–1097

    Article  CAS  PubMed  Google Scholar 

  • Lie DC, Colamarino SA, Song HJ, Désiré L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signaling regulates adult hippocampal neurogenesis. Nature 437:1370–1375

    Article  CAS  PubMed  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguschak KA, Ressler KJ (2011) Wnt signaling in amygdala-dependent learning and memory. J Neurosci 31:13057–13067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruki K, Izaki Y, Nomura M, Yamauchi T (2001) Differences in paired-pulse facilitation and long-term potentiation between dorsal and ventral CA1 regions in anesthetized rats. Hippocampus 11:655–661

    Article  CAS  PubMed  Google Scholar 

  • Nusse R, Varmus H (2012) Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 31:2670–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva CA, Vargas JY, Inestrosa NC (2013) Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci 7:224

    Article  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates—The New coronal set, 5th edn. Elsevier Academic Press, San Diego, California

    Google Scholar 

  • Peineau S, Bradley C, Taghibiglou C, Doherty A, Bortolotto ZA, Wang YT, Collingridge GL (2008) The role of GSK-3 in synaptic plasticity. Br J Pharmacol 153:428–437

    Article  Google Scholar 

  • Pustylnyak VO, Lisachev PD, Shtark MB (2015) Expression of p53 target genes in the early phase of long-term potentiation in the rat hippocampal CA1 area. Neural Plast. doi:10.1155/2015/242158

    PubMed  PubMed Central  Google Scholar 

  • Salinas PC, Zou Y (2008) Wnt signaling in neural circuit assembly. Annu Rev Neurosci 31:339–358

    Article  CAS  PubMed  Google Scholar 

  • Schulz PE, Cook EP, Johnston D (1994) Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J Neurosci 14:5325–5337

    CAS  PubMed  Google Scholar 

  • Seo J, Hong J, Lee SJ, Choi SY (2012) c-Jun N-terminal phosphorylation is essential for hippocampal synaptic plasticity. Neurosci Lett 531:14–19

    Article  CAS  PubMed  Google Scholar 

  • Sheng M (2001) Molecular organization of the postsynaptic specialization. Proc Natl Acad Sci USA 98:7058–7061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu H, Julius MA, Giarre M, Zheng Z, Brown AM, Kitajewski J (1997) Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ 8:1349–1358

    CAS  PubMed  Google Scholar 

  • Shimogori T, VanSant J, Paik E, Grove EA (2004) Members of the Wnt, Fz, and Frp gene families expressed in postnatal mouse cerebral cortex. J Comp Neurol 473:496–510

    Article  CAS  PubMed  Google Scholar 

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96:5522–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakou E, Salinas PC (2014) Postsynaptic assembly: a role for Wnt signaling. Dev Neurobiol 74:818–827

    CAS  PubMed  Google Scholar 

  • Stamos JL, Weis WI (2013) The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a007898

    PubMed  PubMed Central  Google Scholar 

  • Stein V, House DR, Bredt DS, Nicoll RA (2003) Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J Neurosci 23:5503–5506

    CAS  PubMed  Google Scholar 

  • Sutherland C (2011) What are the bona fide GSK3 Substrates? Int J Alzheimers Dis. doi:10.4061/2011/505607

    PubMed  PubMed Central  Google Scholar 

  • Sweatt JD (1999) Toward a molecular explanation for long-term potentiation. Learn Mem 6:399–416

    Article  CAS  PubMed  Google Scholar 

  • Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M (2002) Cadherin regulates dendritic spine morphogenesis. Neuron 35:77–89

    Article  CAS  PubMed  Google Scholar 

  • Toledo EM, Colombres M, Inestrosa NC (2008) Wnt signaling in neuroprotection and stem cell differentiation. Prog Neurobiol 86:281–296

    Article  CAS  PubMed  Google Scholar 

  • Tukhbatova GR, Kuleshova EP, Stepanichev MY, Ivanov AD, Salozhin SV (2011) Optimization of a preparation of lentiviral particles for transduction of neurons in vivo. Neurochem J 5:294–300

    Article  Google Scholar 

  • Uzakov SS, Ivanov AD, Salozhin SV, Markevich VA, Gulyaeva NV (2015) Lentiviral-mediated overexpression of nerve growth factor (NGF) prevents beta-amyloid [25-35]-induced long term potentiation (LTP) decline in the rat hippocampus. Brain Res 1624:398–404

    Article  CAS  PubMed  Google Scholar 

  • van Amerongen R, Berns A (2006) Knockout mouse models to study Wnt signal transduction. Trends Genet 22:678–689

    Article  PubMed  Google Scholar 

  • Varela-Nallar L, Grabowski CP, Alfaro IE, Alvarez AR, Inestrosa NC (2009) Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Dev. doi:10.1186/1749-8104-4-41

    PubMed  PubMed Central  Google Scholar 

  • Vargas JY, Fuenzalida M, Inestrosa NC (2014) In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer’s disease model. J Neurosci 34:2191–2202

    Article  CAS  PubMed  Google Scholar 

  • Vargas JY, Ahumada J, Arrázola MS, Fuenzalida M, Inestrosa NC (2015) WASP-1, a canonical Wnt signaling potentiator, rescues hippocampal synaptic impairments induced by Aβ oligomers. Exp Neurol 264:14–25

    Article  CAS  PubMed  Google Scholar 

  • Vogt DL, Thomas D, Galvan V, Bredesen DE, Lamb BT, Pimplikar SW (2011) Abnormal neuronal networks and seizure susceptibility in mice overexpressing the APP intracellular domain. Neurobiol Aging 32:1725–1729

    Article  CAS  PubMed  Google Scholar 

  • Wey A, Martinez Cerdeno V, Pleasure D, Knoepfler PS (2010) c- and N-myc regulate neural precursor cell fate, cell cycle, and metabolism to direct cerebellar development. Cerebellum 9:537–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YC, Ma YL, Chen SK, Wang CW, Lee EH (2003) Focal adhesion kinase is required, but not sufficient, for the induction of long-term potentiation in dentate gyrus neurons in vivo. J Neurosci 23:4072–4080

    CAS  PubMed  Google Scholar 

  • Yang Z, Wu Y, Zheng L, Zhang C, Yang J, Shi M, Feng D, Wu Z, Wang YZ (2013) Conditioned medium of Wnt/β-catenin signaling-activated olfactory ensheathing cells promotes synaptogenesis and neurite growth in vitro. Cell Mol Neurobiol 33:983–990

    Article  CAS  PubMed  Google Scholar 

  • Zervas M, Opitz T, Edelmann W, Wainer B, Kucherlapati R, Stanton PK (2005) Impaired hippocampal long-term potentiation in microtubule-associated protein 1B-deficient mice. J Neurosci Res 82:83–92

    Article  CAS  PubMed  Google Scholar 

  • Zhu LQ, Wang SH, Liu D, Yin YY, Tian Q, Wang XC, Wang Q, Chen JG, Wang JZ (2007) Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J Neurosci 27:12211–12220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant of the Program of Fundamental Research of Russian Academy of Sciences No. 1.26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Ya Ivanova.

Additional information

Olga Ya Ivanova and Yulia V. Dobryakova share first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, O.Y., Dobryakova, Y.V., Salozhin, S.V. et al. Lentiviral Modulation of Wnt/β-Catenin Signaling Affects In Vivo LTP. Cell Mol Neurobiol 37, 1227–1241 (2017). https://doi.org/10.1007/s10571-016-0455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0455-z

Keywords

Navigation