Skip to main content
Log in

Antioxidant Enzymatic System in Neuronal and Glial Cells Enriched Fractions of Rat Brain After Aluminum Exposure

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aries I, Jakoby WB (1976) Glutathione metabolism and functions. Kroc Found Ser C 1–382:1976

  • Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335–358

    Article  PubMed  CAS  Google Scholar 

  • Bolaños JP, Heales SJR, Peuchen S, Barker JE, Land JM, Clark JB (1996) Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radic Biol Med 21:995–1001

    Article  PubMed  Google Scholar 

  • Bondy SC, Liu D, Guo-Ross S (1998). Aluminum treatment induces nitric oxide synthase in the rat brain. Neurochem Int 33(1):51–54

    Article  PubMed  CAS  Google Scholar 

  • Cafe C, Torri C, Bertorelli L, Tartara F, Tancioni F, Gaetani P, Rodriguez y Baena R, Marzatico F (1995) Oxidative events in neuronal and glial cell-enriched fractions of rat cerebral cortex. Free Radic Biol Med 19(6):853–857

    Article  Google Scholar 

  • Campbell A, Prasad KN, Bondy SC (1999) Aluminum-induced oxidative events in cell lines: glioma are more responsive than neuroblastoma. Free Radical Biol Med 26:1166

    Article  CAS  Google Scholar 

  • Candan D, Andreas M, Florian T, Myroslav Z, Patrick PM, Peter R, Manfred G, Sabine JB, Wolfgang HO, Günter UH (2007) Glia protects neurons against extracellular human neuromelanin. Neurodegener Dis 4:218–226

    Article  CAS  Google Scholar 

  • Cooper AJL (1997) Glutathione in the brain: disorders of glutathione metabolism. In Rosenberg RN, Prusiner SB, DiMauro S, Barchi RL, Kunk LM (eds) The molecular and genetic basis of neurological disease. Butterworth-Heinemann, Boston, pp 1195–1230

    Google Scholar 

  • Cucarella C, Montoliu C, Hermenegildo C, Saez R, Manzo L, Minana MD, Felipo V (1998) Chronic exposure to aluminum impairs neuronal glutamate-nitric oxide-cyclic GMP pathway. J Neurochem 70:1609

    Article  PubMed  CAS  Google Scholar 

  • Damier P, Hirsch EC, Agid YA, Graybiel AM (1999) The substansia nigra of the human brain II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448

    Article  PubMed  Google Scholar 

  • Drukarch B, Schepens E, Jongenelen CAM, Stoof JC, Langeveld CH (1997) Astrocyte-mediated enhancement of neuronal survival is abolished by glutathione deficiency. Brain Res 770:123–130

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL (1959). Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Exley C (2004) The pro-oxidant activity of aluminium. Free Radic Biol Med 36(3):380–387

    Article  PubMed  CAS  Google Scholar 

  • Gill K, Menez JF, Lucas D, Deitrich RA (1992) Enzymatic production of acetaldehyde from ethanol in rat brain tissue. Alcohol Clin Exp Res 16:910–915

    Article  PubMed  CAS  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennet MVL, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520

    PubMed  CAS  Google Scholar 

  • Gutteridge JMC, Quinlan GJ, Clark I, Halliwell B (1985) Aluminum salts accelerate peroxidation of membrane-lipids stimulated by iron salts. Biochim Biophys Acta 835:441–447

    PubMed  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WS (1974) Glutathione-s-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (eds) (1989) Free radicals in biology and medicine, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Hollensworth SB, Shen C-C, Sim JE, Spitz DR, Wilson GL, LeDoux SP (2000) Glial cell type-specific responses to menadione-induced oxidative stress. Free Radic Biol Med 28(8):1161–1174

    Article  PubMed  CAS  Google Scholar 

  • Hou J-GG, Cohen G, Mytilineou C (1997) Basic fibroblast growth factor stimulation of glial cells protects dopamine neurons from 6-hydroxydopamine toxicity: involvement of the glutathione system. J Neurochem 69:76–83

    Article  PubMed  CAS  Google Scholar 

  • Iwata-Ichikawa E, Kondo Y, Miyazaki I, Asanuma M, Ogawa N (1999) Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J Neurochem 72:2334–2344

    Article  PubMed  CAS  Google Scholar 

  • Kamendulis LM, Jiang J, Xu Y, Klaunig JE (1999) Induction of oxidative stress and oxidative damage in rat glial cells by acetonitrile. Carcinogenesis 20(8):1555–1560

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Ota T, Matsuoka Y, Tooyama I, Kimura H, Shimohana S, Nomura Y, Gebicke-Haerter PJ, Tanguchi T (1999) H2O2-induced apoptosis mediated by p53 protein in glial cells. Glia 25:154–164

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Taniguchi T, Shimohama S (1999) Apoptotic cell death in neurons and glial cells: Implications for Alzheimer’s disease. Jpn J Pharmacol 79:1–5

    Article  PubMed  CAS  Google Scholar 

  • Kong S, Liochev S, Fridovich I (1992) Aluminum(III) facilitates the oxidation of NADH by the superoxide anion. Free Radic Biol Med 13:79–81

    Article  PubMed  CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radicals during auto-oxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  PubMed  CAS  Google Scholar 

  • Lovell MA, Ehmann WD, Marksbery WR (1993) Laser microprobe analysis of brain Al in Alzheimer’s disease. Ann Neurol 33:36–42

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Luck H (1971) Catalase. In Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 885–893

  • Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJL (1994) Vitamin E, ascorbate, glutathione, Glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 62:45–53

    Article  PubMed  CAS  Google Scholar 

  • Massey V, Williums Jr CH (1965) On the reaction mechanism of yeast glutathione reductase. J Biol Chem 240:4470–4475

    PubMed  CAS  Google Scholar 

  • Meglio L, Oteiza PI (1999) Aluminum enhances melanin-induced lipid peroxidation. Neurochem Res 24:1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Alvarez E, Soto-Otero R, Hermida-Ameijeiras A, Lopez- Real AM, Labandeira-Garcia JL (2002) Effects of aluminum and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1586:155–168

    PubMed  CAS  Google Scholar 

  • Moreno S, Mugnaini E, Ceru MP (1995) Immunocytochemical localization of catalase in the central nervous system of the rat. J Histochem Cytochem 43:1253–1267

    PubMed  CAS  Google Scholar 

  • Mulcahy RT, Wartman MA, Bailey HH, Gipp JJ (1997) Constitutive and b-naphthoflavone-induced expression of the human g-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J Biol Chem 272:7445–7454

    Article  PubMed  CAS  Google Scholar 

  • Mundy WR, Freudenrich TM, Kodavant PRS (1997) Aluminum potentiates glutamate-induced calcium accumulation and iron-induced oxygen free radical formation in primary neuronal cultures. Mol Chem Neuropathol 32:41–57

    PubMed  CAS  Google Scholar 

  • Nehru B, Anand P (2005) Oxidative damage following chronic aluminium exposure in adult and pup rat brains. J Trace Elem Med Biol 19:203–208

    PubMed  CAS  Google Scholar 

  • Ohkawa H, Oishi N, Yagi K (1951) Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:30–38

    Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocytes glutathione peroxidase. J Lab Clin Med 70:158–168

    PubMed  CAS  Google Scholar 

  • Rahman I, Bel A, Mulier B, Lawson MF, Harrison DJ, MacNee W, Smith CAD (1996a) Transcriptional regulation of g-glutamylcysteine synthetase-heavy subunit by oxidants in human alveolar epithelial cells. Biochem Biophys Res Commun 229:832–837

    Article  PubMed  CAS  Google Scholar 

  • Rahman I, Smith CAD, Lawson MF, Harrison DJ, MacNee W (1996b) Induction of g-glutamylcysteine synthetase by cigarette smoke is associated with AP-1 in human alveolar epithelial cells. FEBS Lett 396:21–25

    Article  PubMed  CAS  Google Scholar 

  • Rani UJ, Rao KS (1983) Isolation of neurons and astrocytes from rat brain. J Neuroscience Res 10:101–105

    Article  CAS  Google Scholar 

  • Reed DJ (1986) Regulation of reductive process by glutathione. Biol Chem Pharmacol 35:7–13

    CAS  Google Scholar 

  • Rice ME, Russo-Menna I (1998) Differential compartmentalization of brain ascorbate and glutathione between neurons and glial. Neuroscience 82:1213–1223

    Article  PubMed  CAS  Google Scholar 

  • Rosen DR, Siddique T., Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng H-X, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergh R, Hung W-Y, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RHJ (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  PubMed  CAS  Google Scholar 

  • Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676

    Article  PubMed  CAS  Google Scholar 

  • Sekhar KR, Meredith MJ, Kerr LD, Soltaninassab SR, Spitz DR, Xu Z-Q, Freeman ML (1997) Expression of glutathione and g-glutamylcysteine synthetase mRNA is Jun dependent. Biochem Biophys Res Commun 234:588–593

    Article  PubMed  CAS  Google Scholar 

  • Shi MM, Kugelman A, Iwamoto T, Tian L, Forman HJ (1994) Quinone-induced oxidative stress elevates glutathione and induces g-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J Biol Chem 269:26512–26517

    PubMed  CAS  Google Scholar 

  • Toimela TA, Tahti H (1995) Effects of mercury, methylmercury and aluminium on glial fibrillary acidic protein expression in rat cerebellar astrocyte cultures. Toxicol In vitro 9:317–325

    Article  CAS  PubMed  Google Scholar 

  • Verstraeten SV, Oteiza PI (2000) Effects of Al3+ and related metals on membrane phase state and hydration: correlation with lipid oxidation. Arch Biochem Biophys 375:340–346

    Article  PubMed  CAS  Google Scholar 

  • Walton JR (2004) A bright field/fluorescent stain for aluminum: its specificity, validation, and staining characteristics. Biotech Histochem 79:169–76

    Article  PubMed  CAS  Google Scholar 

  • Wills ED (1966) Mechanism of lipid peroxide formation in animal tissue. Biochem J 99:667–676

    PubMed  CAS  Google Scholar 

  • Yao KS, Godwin AK, Johnson SW, Ozols RF, O’Dwyer PJ, Hamilton TC (1995) Evidence for altered regulation of g-glutamylcysteine synthetase gene expression among cisplatinsensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Res 55:4367–4374

    PubMed  CAS  Google Scholar 

  • Yokel RA, O’Callaghan JP (1998) An aluminum-induced increase in GFAP is attenuated by some chelators. Neurotoxicol Teratol 20:55–60

    Article  PubMed  CAS  Google Scholar 

  • Zielke HR, Jackson MJ, Tildon JT, Max SR (1993) A glutamatergic mechanism for aluminum toxicity in astrocytes. Mol Chem Neuropathol 19:219–233

    Article  PubMed  CAS  Google Scholar 

  • Zahler WL, Cleland WW (1968) A specific and sensitive assay for disulfides. J Biol Chem 243:716–719

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial assistance provided by the ‘University Grant Commission,’ India is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimla Nehru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanna, P., Nehru, B. Antioxidant Enzymatic System in Neuronal and Glial Cells Enriched Fractions of Rat Brain After Aluminum Exposure. Cell Mol Neurobiol 27, 959–969 (2007). https://doi.org/10.1007/s10571-007-9233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9233-2

Keywords

Navigation