Skip to main content
Log in

Influence of TEMPO-oxidised cellulose nanofibrils on the properties of filler-containing papers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work, cellulose nanofibrils (CNF) were produced from a Eucalyptus globulus bleached kraft pulp by TEMPO-mediated oxidation and mechanical homogenisation, and their effects in papermaking, namely filler flocculation and retention, dry and wet-web strength and structural properties, were studied in detail. Cellulose nanofibrils possessing 0.6 mmol/g carboxyl groups and a degree of polymerisation (DP) of ca. 550 were found to promote filler flocculation and retention in the fibre mat, whereas the same amount (3 wt%) of CNF having 1.5 mmol/g of carboxyl groups, a DP of ca. 200 and a similar mean diameter exhibited the opposite effect. These results were interpreted with the help of flocculation studies of precipitated calcium carbonate (PCC) in the presence of CNF carried out by laser diffraction spectrometry. In addition, the mechanical and structural properties of the handsheets were analysed, revealing that the less charged CNF led to more closed matrices and, even increasing the filler retention, had a positive role on the tensile strength. A bonding mechanism among eucalypt fibres, PCC, CNF and a linear cationic polyacrylamide is proposed, consistent with the flocculation, retention and paper strength and structural property results. It is concluded that, to be used in papermaking, the CNF must not have a high charge (or a small length) to be able to flocculate the filler particles and, at the same time, to increase the filler-to-cellulosic fibres bonding. A complementary study on the wet-web resistance of handsheets produced with the less charged CNF was conducted for moisture contents between 10 and 70%, showing that these CNF can significantly improve the handsheet wet tensile strength (nearly 100%) even for water contents above 50%. The use of CNF in the paper machine may thus contribute, through the higher wet-web tensile resistance, to reducing breaks and increasing the operating speeds and, through the higher filler retention, to important fibre and cost savings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ämmälä A, Liimatainen H, Burmeister C, Niinimäki J (2013) Effect of tempo and periodate-chlorite oxidized nanofibrils on ground calcium carbonate flocculation and retention in sheet forming and on the physical properties of sheets. Cellulose 20:2451–2460

    Article  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    Article  CAS  Google Scholar 

  • Brodin FW, Gregersen OW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—a review. Nord Pulp Paper Res J 29(1):156–166

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G, Tobjörk D, Österbacka R (2012) Inkjet-printed silver-nanoparticles on nano-engineered cellulose films for electrically conducting structures and organic transistors—concept and challenges. J Nanoparticle Res 14:1213

    Article  Google Scholar 

  • Eichorn S, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  Google Scholar 

  • Espinosa E, Tarrés Q, Delgado-Aguilar M, González I, Mutjé P, Rodríguez A (2016) Suitability of wheat straw mechanical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23:837–852

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and highgas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Gamelas JAF, Pedrosa J, Lourenço AF, Mutjé P, Chinga-Carrasco G, Singh G, Ferreira PJT (2015a) On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron 72:28–33

    Article  CAS  Google Scholar 

  • Gamelas JAF, Pedrosa J, Lourenço AF, Ferreira PJ (2015b) Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography. Colloids Surf A 469:36–41

    Article  CAS  Google Scholar 

  • González I, Boufi S, Pèlach M, Alcalà M, Vilaseca F, Mutjé P (2012) Nanofibrillated cellulose as a paper additive in eucalyptus pulps. BioResources 7(4):5167–5180

    Article  Google Scholar 

  • González I, Alcalà M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609

    Article  Google Scholar 

  • Hänninen T, Orelma H, Laine J (2015) TEMPO oxidized cellulose thin films analysed by QCM-D and AFM. Cellulose 22:165–171

    Article  Google Scholar 

  • He M, Cho B-U, Won JM (2016) Effect of precipitated calcium carbonate—cellulose nanofibrils composite filler on paper properties. Carbohydr Polym 136:820–825

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund L, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  • Hii C, Gregersen ØW, Chinga-Carrasco G, Eriksen Ø (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nord Pulp Pap Res J 27(2):388–396

    Article  CAS  Google Scholar 

  • Hubbe MA (2014) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9(1):1634–1763

    Google Scholar 

  • Ioelovich M, Figovsky O (2010) Structure and properties of nanoparticles used in paper compositions. Mech Compos Mater 46(4):435–442

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized celulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Kangas H, Lahtinen P, Sneck A, Saariaho A-M, Laitinen O, Hellén E (2014) Characterization of fibrillated celluloses a short review and evaluation of characteristics with a combination of methods. Nordic Pulp Pap Res J 29(1):129–143

    Article  CAS  Google Scholar 

  • Kekäläinen K, Liimatainen H, Illikainen M, Maloney TC, Niinimaki J (2014) The role of the hornification in the disintegration behaviour of TEMPO-oxidized bleached hardwood fibres in a high-shear homogenizer. Cellulose 21:1163–1174

    Article  Google Scholar 

  • Khalil H, Davoudpour Y, Islam M, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Kobayashi Y, Gondo T, Yamamoto M, Saito T, Isogai A (2016) Fundamental properties of handsheets containing TEMPO-oxidized pulp in various weight ratios. Nordic Pulp Paper Res J 31(2):248–254

    Article  CAS  Google Scholar 

  • Korhonen MHJ, Laine J (2014) Flocculation and retention of fillers with nanoceluloses. Nordic Pulp Paper Res J 29(1):119–128

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated celulose—its barrier properties and applications in cellulosic materials: a review. CarbohydrPolym 90:735–764

    CAS  Google Scholar 

  • Lourenço AF, Gamelas JA, Ferreira PJ (2014) Increase of the filler content in papermaking by using a silica-coated PCC filler. Nordic Pulp Pap Res J 29(2):240–245

    Article  Google Scholar 

  • Petroudy SRD, Syverud K, Chinga-Carrrasco G, Ghasemain A, Resalati H (2014) Effects of bagasse microfibrillated celulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydr Polym 99:311–318

    Article  Google Scholar 

  • Rasteiro MG, Garcia FAP, Ferreira P, Blanco A, Negro C, Antunes E (2008) Evaluation of flocks resistance and reflocculation capacity using the LDS technique. Powder Technol 183:231–238

    Article  CAS  Google Scholar 

  • Raymond L, Turcotte R, Gratton R (2004) The challenges of increasing filler in fine paper. Paper Technol 45(6):34–40

    CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-Mediated Oxidation of Native Cellulose The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A Physicochem Eng Aspects 289:219–225

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2007) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46:773–780

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibres prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation Using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  Google Scholar 

  • Saraiva MS, Gamelas JAF, de Sousa APM, Reis BM, Amaral JL, Ferreira PJ (2010) A new approach for the modification of paper surface properties using polyoxometalates. Materials 3:201–215

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    Article  CAS  Google Scholar 

  • Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler- nanocellulose composite structure for printed electronics applications. Cellulose 19:821–829

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Ricardo Serra, PhD, from the Department of Mechanical Engineering of the University of Coimbra for his valuable cooperation in the AFM analysis. Ana F. Lourenço acknowledges Fundação para a Ciência e Tecnologia (FCT), Portugal, for PhD grant SFRH/BDE/108095/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourenço, A.F., Gamelas, J.A.F., Nunes, T. et al. Influence of TEMPO-oxidised cellulose nanofibrils on the properties of filler-containing papers. Cellulose 24, 349–362 (2017). https://doi.org/10.1007/s10570-016-1121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1121-9

Keywords

Navigation