Skip to main content
Log in

The surface properties of cellulose and lignocellulosic materials assessed by inverse gas chromatography: a review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The physicochemical surface properties of cellulose and lignocellulosic materials are of major importance in the context of the production of composites, in papermaking, and textile area. These properties can be evaluated by using inverse gas chromatography (IGC), a particularly suitable technique for the characterization of the surface properties of fibrous materials and powders. At infinite dilution conditions of appropriate gas probes, IGC may provide important parameters including the dispersive component of the surface energy of the material under analysis, thermodynamic data on the adsorption of specific probes, and Lewis acid–base interaction parameters between the matrix and the filler of composite materials. This paper critically reviews the most relevant results available in the literature concerning the characterization of cellulose and lignocellulosic materials using IGC. Emphasis will be put into the cellulose and nanocellulose surface properties, changes in the surface properties of cellulose and lignocellulosic materials after chemical and physical modifications, and in the compatibility of cellulose-based materials with polymeric matrices. The surface properties of non-woody fibers will also be considered. Before discussing the results available in the literature, the theoretical background and the main approaches used for the calculation of parameters accessed by IGC will be given. It is expected that this review can contribute to a better knowledge of the physicochemical surface properties of cellulosics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Halim ES (2012) Physiochemical properties of differently pretreated cellulosic fibers. Carbohydr Polym 88:1201–1207

    CAS  Google Scholar 

  • Bach S, Belgacem MN, Gandini A (2005) Hydrophobisation and densification of wood by different chemical treatments. Holzforschung 59:389–396

    CAS  Google Scholar 

  • Belgacem MN (2000) Characterization of polysaccharides, lignin and other woody components by inverse gas chromatography: a review. Cellul Chem Technol 34:357–383

    CAS  Google Scholar 

  • Belgacem MN, Gandini A (1999) IGC as a tool to characterize dispersive and acid-base properties of the surface of fibers and powders. In: Pfefferkorn E (ed) Interfacial phenomena in chromatography. Marcel Dekker, New York, pp 41–124

    Google Scholar 

  • Belgacem MN, Czeremuszkin G, Sapieha S, Gandini A (1995) Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose 2:145–157

    CAS  Google Scholar 

  • Belgacem MN, Blayo A, Gandini A (1996) Surface characterization of polysaccharides, lignins, printing ink pigments, and ink fillers by inverse gas chromatography. J Colloid Interface Sci 182:431–436

    CAS  Google Scholar 

  • Boras L, Sjostrom J, Gatenholm P (1997) Characterization of surfaces of CTMP fibers using inverse gas chromatography combined with multivariate data analysis. Nord Pulp Paper Res J 12(4):220–224

    CAS  Google Scholar 

  • Borges JP, Godinho MH, Belgacem MN, Martins AF (2001) New bio-composites based on short fibre reinforced hydroxypropylcellulose films. Compos Interface 8:233–241

    CAS  Google Scholar 

  • Botaro VR, Gandini A (1998) Chemical modification of the surface of cellulosic fibres. 2. Introduction of alkenyl moieties via condensation reactions involving isocyanate functions. Cellulose 5:65–78

    CAS  Google Scholar 

  • Brendlé E, Papirer E (1997a) A new topological index for molecular probes used in inverse gas chromatography for the surface nanorugosity evaluation 1. Method of evaluation. J Colloid Interface Sci 194:207–216

    Google Scholar 

  • Brendlé E, Papirer E (1997b) A new topological index for molecular probes used in inverse gas chromatography 2. Application for the evaluation of the solid surface specific interaction potential. J Colloid Interface Sci 194:217–224

    Google Scholar 

  • Carvalho MG, Santos JMRCA, Martins AA, Figueiredo MM (2005a) The effects of beating, web forming and sizing on the surface energy of Eucalyptus globulus kraft fibres evaluated by inverse gas chromatography. Cellulose 12:371–383

    CAS  Google Scholar 

  • Carvalho MG, Ferreira PJ, Santos JMRCA, Amaral JL, Figueiredo MM (2005b) Effect of extended cooking and oxygen prebleaching on the surface energy of Eucalyptus globulus kraft pulps. J Pulp Paper Sci 31(2):90–94

    CAS  Google Scholar 

  • Chehimi MM, Abel M, Perruchot C, Delamar M, Lascelles SF, Armes SP (1999) The determination of the surface energy of conducting polymers by inverse gas chromatography at infinite dilution. Synth Met 104:51–59

    CAS  Google Scholar 

  • Chen J, Yan N (2012) Hydrophobization of bleached softwood kraft fibers via adsorption of organo-nanoclay. Bioresources 7:4132–4149

    Google Scholar 

  • Chtourou H, Riedl B, Kokta BV (1995) Surface characterizations of modified polyethylene pulp and wood pulps fibres using XPS and inverse gas chromatography. J Adhes Sci Technol 9:551–574

    CAS  Google Scholar 

  • Chtourou H, Riedl B, Kokta BV (1997) Strength properties of wood-PE composites: influence of pulp ratio and pretreatment of PE fibers. Tappi J 80:141–151

    CAS  Google Scholar 

  • Conder JR, Young CL (1979) Physicochemical measurement by gas chromatography. Wiley-Interscience, New York

    Google Scholar 

  • Cordeiro N, Gouveia C, Jacob John M (2011a) Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography. Ind Crop Prod 33:108–115

    CAS  Google Scholar 

  • Cordeiro N, Gouveia C, Moraes AGO, Amico SC (2011b) Natural fibers characterization by inverse gas chromatography. Carbohydr Polym 84:110–117

    CAS  Google Scholar 

  • Cordeiro N, Ornelas M, Ashori A, Sheshmani S, Norouzi H (2012) Investigation on the surface properties of chemically modified natural fibres using inverse gas chromatography. Carbohydr Polym 87:2367–2375

    CAS  Google Scholar 

  • Coupas AC, Gauthier H, Gauthier R (1998) Inverse gas chromatography as a tool to characterize ligno-cellulosic fibers modified for composite applications. Polym Compos 19:280–286

    CAS  Google Scholar 

  • Dominkovics Z, Dányádi L, Pukánszky B (2007) Surface modification of wood flour and its effect on the properties of PP/wood composites. Compos Part A Appl Sci 38:1893–1901

    Google Scholar 

  • Donnet JB, Park SJ, Balard H (1991) Evaluation of specific interactions of solid surfaces by inverse gas chromatography—a new approach based on polarizability of the probes. Chromatographia 31:434–440

    CAS  Google Scholar 

  • Donnet JB, Qin RY, Wang MJ (1992) A new approach for estimating the molecular areas of linear hydrocarbons and their derivatives. J Colloid Interface Sci 153:572–577

    CAS  Google Scholar 

  • Dorris GM, Gray DG (1980) Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibres. J Colloid Interface Sci 77:353–362

    CAS  Google Scholar 

  • Duarte GV, Gamelas JAF, Ramarao BV, Amidon TE, Ferreira PJ (2012) Properties of extracted Eucalyptus globulus kraft pulps. Tappi J 11(4):47–55

    CAS  Google Scholar 

  • Felix JM, Gatenholm P (1993a) Characterization of cellulose fibers using inverse gas chromatography. Nord Pulp Paper Res J 8(1):200–203

    CAS  Google Scholar 

  • Felix JM, Gatenholm P (1993b) Formation of entanglements at brushlike interfaces in cellulose-polymer composites. J Appl Polym Sci 50:699–708

    CAS  Google Scholar 

  • Felix JM, Gatenholm P, Schreiber HP (1993) Controlled interactions in cellulose-polymer composites. 1. Effect on mechanical properties. Polym Compos 14:449–457

    CAS  Google Scholar 

  • Felix J, Gatenholm P, Schreiber HP (1994) Plasma modification of cellulose fibers: effects on some polymer composite properties. J Appl Polym Sci 51:285–295

    CAS  Google Scholar 

  • Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56:40

    CAS  Google Scholar 

  • Gadhe JB, Gupta RB, Elder T (2006) Surface modification of lignocellulosic fibers using high-frequency ultrasound. Cellulose 13:9–22

    CAS  Google Scholar 

  • Gamelas JAF, Santos JMRCA, Ferreira PJ (2011) Surface energetics of softwood kraft pulps by inverse gas chromatography. In: Ander P, Bauer W, Heinemann S, Kallio P, Passas R, Treimanis A (eds) Fine structure of papermaking fibres. COST Office, Brussels, pp 39–49

    Google Scholar 

  • Gamelas JAF, Evtyugina MG, Portugal I, Evtuguin DV (2012) New polyoxometalate-functionalized cellulosic fibre/silica hybrids for environmental applications. RSC Adv 2:831–839

    CAS  Google Scholar 

  • Gamelas JAF, Duarte GV, Ferreira PJ (2013) Inverse gas chromatography and XPS of extracted kraft pulps. Holzforschung 67:273–276

    Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhesion Sci Technol 22:545–567

    CAS  Google Scholar 

  • Garnier G, Glasser WG (1994) Measurement of the surface free energy of amorphous cellulose by alkane adsorption: a critical evaluation of inverse gas chromatography (IGC). J Adhesion 46:165–180

    CAS  Google Scholar 

  • Garnier G, Glasser WG (1996) Measuring the surface energies of spherical cellulose beads by inverse gas chromatography. Polym Eng Sci 36:885–894

    CAS  Google Scholar 

  • Gassan J, Gutowski VS, Bledzki AK (2000) About the surface characteristics of natural fibres. Macromol Mater Eng 283:132–139

    CAS  Google Scholar 

  • Gauthier R, Joly C, Coupas AC, Gauthier H, Escoubes M (1998a) Interfaces in polyolefin/cellulosic fiber composites: chemical coupling, morphology, correlation with adhesion and aging in moisture. Polym Compos 19:287–300

    CAS  Google Scholar 

  • Gauthier H, Coupas A, Villemagne P, Gauthier R (1998b) Physicochemical modifications of partially esterified cellulose evidenced by inverse gas chromatography. J Appl Polym Sci 69:2195–2203

    CAS  Google Scholar 

  • Goss KU (1997) Considerations about the adsorption of organic molecules from the gas phase to surfaces: implications for inverse gas chromatography and the prediction of adsorption coefficients. J Colloid Interface Sci 190:241–249

    CAS  Google Scholar 

  • Gregorova A, Wimmer R, Hrabalova M, Koller M, Ters T, Mundigler N (2009) Effect of surface modification of beech wood flour on mechanical and thermal properties of poly(3-hydroxybutyrate)/wood flour composites. Holzforschung 63:565–570

    CAS  Google Scholar 

  • Gulati D, Sain M (2006a) Surface characteristics of untreated and modified hemp fibers. Polym Eng Sci 46:269–273

    CAS  Google Scholar 

  • Gulati D, Sain M (2006b) Fungal-modification of natural fibers: a novel method of treating natural fibers for composite reinforcement. J Polym Environ 14:347–352

    CAS  Google Scholar 

  • Gurnagul N, Gray DG (1987) Surface-adsorption at low coverage of normal-alkanes on bleached kraft papers using gas-chromatography. Can J Chem 65:1935–1939

    CAS  Google Scholar 

  • Gutmann V (1978) The donor-acceptor approach to molecular interactions. Plenum Press, New York

    Google Scholar 

  • Heng JYY, Pearse DF, Thielmann F, Lampke T, Bismarck A (2007) Methods to determine surface energies of natural fibres: a review. Compos Interface 14:581–604

    CAS  Google Scholar 

  • Jacob PN, Berg JC (1994) Acid-base surface energy characterization of microcrystalline cellulose and two wood pulp fiber types using inverse gas chromatography. Langmuir 10:3086–3093

    CAS  Google Scholar 

  • Jandura P, Riedl B, Kokta BV (2002) Inverse gas chromatography study on partially esterified paper fiber. J Chromatogr 969:301–311

    CAS  Google Scholar 

  • Kamdem DP, Riedl B (1991) Characterization of wood fibers modified by phenol-formaldehyde. Colloid Polym Sci 269:595–603

    CAS  Google Scholar 

  • Kamdem DP, Riedl B (1992) Inverse gas chromatography of lignocellulosic fibers coated with a thermosetting polymer: use of peak maximum and conder and young methods. J Colloid Interface Sci 150:507–516

    CAS  Google Scholar 

  • Kamdem DP, Bose SK, Luner P (1993) Inverse gas chromatography characterization of birch wood meal. Langmuir 9:3039–3044

    CAS  Google Scholar 

  • Kazayawoko M, Balatinecz J, Romansky M (1997) Thermodynamics of adsorption of n-alkanes on maleated wood fibers by inverse gas chromatography. J Colloid Interface Sci 190:408–415

    CAS  Google Scholar 

  • Kazayawoko M, Balatinecz JJ, Matuana LM (1999) Surface modification and adhesion mechanisms in wood fiber-polypropylene composites. J Mater Sci 34:6189–6199

    CAS  Google Scholar 

  • Kiselev AV (1967) Adsorbents in gas chromatography. In: Giddings JC, Keller RA (eds) Advances in chromatography. Marcel Dekker Co., New York, vol. 4, pp 113–196

  • Lee HL, Luner P (1989) Characterization of AKD sized papers by inverse gas chromatography. Nord Pulp Paper Res J 4(2):164–172

    CAS  Google Scholar 

  • Lee HL, Luner P (1993) Analysis of the adsorption of alkanes on high surface area cellulose by inverse gas chromatography. J Wood Chem Technol 13:127–144

    CAS  Google Scholar 

  • Liu FP, Rials TG, Simonsen J (1998) Relantionship of wood surface energy to surface composition. Langmuir 14:536–541

    CAS  Google Scholar 

  • Lundqvist A, Odberg L, Berg JC (1995) Surface characterization of non-chlorine-bleached pulp fibers and calcium-carbonate coatings using inverse gas-chromatography. Tappi J 78:139–142

    Google Scholar 

  • Matuana LM, Woodhams RT, Balatinecz JJ, Park CB (1998) Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polym Compos 19:446–455

    CAS  Google Scholar 

  • Matuana LM, Balatinecz JJ, Park CB, Woodhams RT (1999) Surface characteristics of chemically modified newsprint fibers determined by inverse gas chromatography. Wood Fiber Sci 31:116–127

    CAS  Google Scholar 

  • Megiatto JD, Oliveira FB, Rosa DS, Gardrat C, Castellan A, Frollini E (2007) Renewable resources as reinforcement of polymeric matrices: composites based on phenolic thermosets and chemically modified sisal fibers. Macromol Biosci 7:1121–1131

    CAS  Google Scholar 

  • Megiatto JD, Silva CG, Rosa DS, Frollini E (2008) Sisal chemically modified with lignins: correlation between fibers and phenolic composites properties. Polym Degrad Stab 93:1109–1121

    CAS  Google Scholar 

  • Mills RH, Gardner DJ, Wimmer R (2008) Inverse gas chromatography for determining the dispersive surface free energy and acid-base interactions of sheet molding compound-Part II 14 lignocellulosic fiber types for possible composite reinforcement. J Appl Polym Sci 110:3880–3888

    CAS  Google Scholar 

  • Mills RH, Jara R, Gardner DJ, van Heiningen A (2009) Inverse gas chromatography for determining the surface free energy and acid-base chemical characteristics of a water extracted hardwood (Acer rubrum). J Wood Chem Technol 29(1):11–23

    CAS  Google Scholar 

  • Mukhopadhyay P, Schreiber HP (1995) Aspects of acid-base interactions and use of inverse gas chromatography. Colloid Surf A 100:47–71

    CAS  Google Scholar 

  • Oporto GS, Gardner DJ, Kiziltas A, Neivandt DJ (2011) Understanding the affinity between components of wood-plastic composites from a surface energy perspective. J Adhes Sci Technol 25:1785–1801

    CAS  Google Scholar 

  • Papirer E, Brendle E, Balard H, Vergelati C (2000) Inverse gas chromatography investigation of the surface properties of cellulose. J Adhes Sci Technol 14:321–337

    CAS  Google Scholar 

  • Paredes JJ, Mills R, Howel C, Shaler SM, Gardner DJ, van Heiningen A (2009) Surface characterization of red maple strands after hot water extraction. Wood Fiber Sci 41(1):38–50

    CAS  Google Scholar 

  • Peng S, Zou Q (2007) An investigation on the surface properties of lyocell-based carbon fiber with inverse gas chromatography. J Mater Sci 42:6907–6912

    CAS  Google Scholar 

  • Peterlin S, Planinsek O, Moutinho I, Ferreira P, Dolenc D (2010) Inverse gas chromatography analysis of spruce fibers with different lignin content. Cellulose 17:1095–1102

    CAS  Google Scholar 

  • Pommet M, Juntaro J, Heng JYY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MSP, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9:1643–1651

    CAS  Google Scholar 

  • Ramires EC, Frollini E (2012) Tannin–phenolic resins: synthesis, characterization, and application as matrix in biobased composites reinforced with sisal fibers. Compos Part B Eng 43:2851–2860

    CAS  Google Scholar 

  • Rani PR, Ramanaiah S, Reddy KS (2011) Lewis acid-base properties of cellulose acetate butyrate by inverse gas chromatography. Surf Interface Anal 43:683–688

    CAS  Google Scholar 

  • Reutenauer S, Thielmann F (2003) The characterization of cotton fibers and the interaction with perfume molecules by inverse gas chromatography (IGC). J Mater Sci 38:2205–2208

    CAS  Google Scholar 

  • Rials TG, Simonsen J (2000) Investigating interphase development in wood polymer composites by inverse gas chromatography. Compos Interface 7:81–92

    CAS  Google Scholar 

  • Riddle FL, Fowkes FM (1990) Spectral shifts in acid-base chemistry. 1. Van der Waals contributions to acceptor numbers. J Am Chem Soc 112:3259–3264

    CAS  Google Scholar 

  • Riedl B, Kamdem DP (1992) Estimation of the dispersive component of surface energy of polymer grafted lignocellulosic fibers with inverse gas chromatography. J Adhes Sci Technol 6:1053–1067

    CAS  Google Scholar 

  • Rjiba N, Nardin M, Dréan J, Frydrych R (2007) A study of the surface properties of cotton fibers by inverse gas chromatography. J Colloid Interface Sci 314:373–380

    CAS  Google Scholar 

  • Rocha N, Gamelas JAF, Gonçalves PM, Gil MH, Guthrie JT (2009) Influence of physical-chemical interactions on the thermal stability and surface properties of poly(vinyl chloride)-b-poly(hydroxypropyl acrylate)-b-poly(vinyl chloride) block copolymers. Eur Polym J 45:3389–3398

    CAS  Google Scholar 

  • Saint Flour C, Papirer E (1982) Gas solid chromatography: a method of measuring surface free energy characteristics of short glass fibers. 2. Through retention volumes measured near zero surface coverage. Ind Eng Chem Prod Res Dev 21:666–669

    CAS  Google Scholar 

  • Saint Flour C, Papirer E (1983) Gas-solid chromatography: a quick method of estimating surface free energy variations induced by the treatment of short glass fibers. J Colloid Interface Sci 91:69–75

    Google Scholar 

  • Santos JMRCA, Guthrie JT (2005) Analysis of interactions in multicomponent polymeric systems: the key-role of inverse gas chromatography. Mat Sci Eng R 50:79–107

    Google Scholar 

  • Sasa B, Odon P, Stane S, Julijana K (2006) Analysis of surface properties of cellulose ethers and drug release from their matrix tablets. Eur J Pharm Sci 27:375–383

    CAS  Google Scholar 

  • Schultz J, Lavielle L (1989) Interfacial properties of carbon-fiber epoxy matrix composites. In: Lloyd DR, Ward TC, Schreiber HP (eds) Inverse gas chromatography characterization of polymers and other materials, ACS symposium series, 391. American Chemical Society, Washington, pp 185–202

    Google Scholar 

  • Schultz J, Lavielle L, Martin C (1987) The role of the interface in carbon fibre-epoxy composites. J Adhesion 23:45–60

    CAS  Google Scholar 

  • Shen Q (2009) Surface properties of cellulose and cellulose derivatives: a review. In: Roman M (ed) Model cellulosic surfaces, ACS symposium series, 1019. American Chemical Society, Washington, pp 259–289

    Google Scholar 

  • Shen W, Parker IH (1999) Surface composition and surface energetics of various eucalypt pulps. Cellulose 6:41–55

    CAS  Google Scholar 

  • Shen W, Yao W, Li M, Parker I (1998a) Characterization of eucalypt fibre surface using inverse gas chromatography and X-ray photoelectron spectroscopy. Appita J 51(2):147–151

    CAS  Google Scholar 

  • Shen W, Parker IH, Sheng YJ (1998b) The effects of surface extractives and lignin on the surface energy of eucalypt kraft pulp fibers. J Adhes Sci Technol 12:161–174

    CAS  Google Scholar 

  • Shen W, Sheng YJ, Parker IH (1999) Comparison of the surface energetics data of eucalypt fibers and some polymers obtained by contact angle and inverse gas chromatography methods. J Adhes Sci Technol 13:887–901

    CAS  Google Scholar 

  • Shen W, Filonanko Y, Truong Y, Parker IH, Brack N, Pigram P, Liesegang J (2000) Contact angle measurement and surface energetics of sized and unsized paper. Colloid Surf A 173:117–126

    CAS  Google Scholar 

  • Siddiqui N, Mills RH, Gardner DJ, Bousfield D (2011) Production and characterization of cellulose nanofibers from wood pulp. J Adhes Sci Technol 25:709–721

    CAS  Google Scholar 

  • Simonsen J, Hong Z, Rials TG (1997) The properties of the wood-polystyrene interphase determined by inverse gas chromatography. Wood Fiber Sci 29:75–84

    CAS  Google Scholar 

  • Smidsrod O, Guillet JE (1969) Study of polymer-solute interactions by gas chromatography. Macromolecules 2:272–277

    Google Scholar 

  • Steele DF, Moreton RC, Staniforth JN, Young PM, Tobyn MJ, Edge S (2008) Surface energy of microcrystalline cellulose determined by capillary intrusion and inverse gas chromatography. AAPS J 10:494–503

    Google Scholar 

  • Tonoli GHD, Almeida AEFD, Pereira-da-Silva MA, Bassa A, Oyakawa D, Savastano H (2010) Surface properties of eucalyptus pulp fibres as reinforcement of cement-based composites. Holzforschung 64:595–601

    CAS  Google Scholar 

  • Trejo-O′Reilly JA, Cavaille JY, Belgacem MN, Gandini A (1998) Surface energy and wettability of modified cellulosic fibres for use in composite materials. J Adhesion 67:359–374

    Google Scholar 

  • Tshabalala MA (1997) Determination of the acid-base characteristics of lignocellulosic surfaces by inverse gas chromatography. J Appl Polym Sci 65:1013–1020

    CAS  Google Scholar 

  • Tze WT, Gardner DJ (2001) Contact angle and IGC measurements for probing surface-chemical changes in the recycling of wood pulp fibers. J Adhes Sci Technol 15:223–241

    CAS  Google Scholar 

  • Tze WTY, Gardner DJ, Tripp CP, O’Neill SC (2006a) Cellulose fiber/polymer adhesion: effects of fiber/matrix interfacial chemistry on the micromechanics of the interphase. J Adhes Sci Technol 20:1649–1668

    CAS  Google Scholar 

  • Tze WTY, Walinder MEP, Gardner DJ (2006b) Inverse gas chromatography for studying interaction of materials used for cellulose fiber/polymer composites. J Adhes Sci Technol 20:743–759

    CAS  Google Scholar 

  • Walinder MEP, Gardner DJ (2000) Surface energy of extracted and non-extracted Norway spruce wood particles studied by inverse gas chromatography (IGC). Wood Fiber Sci 32:478–488

    CAS  Google Scholar 

  • Walinder MEP, Gardner DJ (2002) Acid-base characterization of wood and selected thermoplastics. J Adhes Sci Technol 16:1625–1649

    CAS  Google Scholar 

  • Wang B, Sain M (2007) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. Bioresources 2:371–388

    CAS  Google Scholar 

  • Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos Part A Appl Sci 33:1083–1093

    Google Scholar 

Download references

Acknowledgments

The author thanks Gabriela Martins for her helpful suggestions to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. F. Gamelas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamelas, J.A.F. The surface properties of cellulose and lignocellulosic materials assessed by inverse gas chromatography: a review. Cellulose 20, 2675–2693 (2013). https://doi.org/10.1007/s10570-013-0066-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0066-5

Keywords

Navigation