Skip to main content
Log in

Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The chemical structure of rye arabinoxylan (rAX) was systematically modified, exploiting selective enzymes to mimic different naturally occurring xylans, i.e., its degree of substitution (DS) was decreased using α-l-arabinofuranosidase, and a controlled decrease in the degree of polymerization (DP) was performed using endo-1,4-β-d-xylanase. The arabinose to xylose ratio was decreased from 0.45 to 0.27 and the weight-average molar mass was decreased from 184,000 to 49,000 g/mol. The resulting samples were used to prepare films, as such, and with 15% (wt. − %) softwood-derived microfibrillated cellulose (MFC) to obtain novel plant-derived biocomposite materials. The enzymatic tailoring of rAX increased the crystallinity of films, evidenced by X-ray diffraction studies, and the addition of MFC to the debranched, low DS rAX induced the formation of ordered structures visible with polarizing optical microscopy. MFC decreased the moisture uptake of films and increased the relative humidity of softening of the films, detected with moisture scanning dynamic mechanical analysis. For the first time, the chemical structure of xylan was proven to significantly affect the reinforcement potential of nano-sized cellulose, as the tensile strength of films from high DP rAXs, but not that of low DP rAXs, clearly increased with the addition of MFC. At the same time, MFC only increased the Young’s modulus of films from rAX with high arabinose content, regardless of DP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ASTM (2007) Standard test method for haze and light transmittance of transparent plastics, method ASTM D 1003–07

  • Bengtsson S, Åman P, Andersson RE (1992) Structural studies on water-soluble arabinoxylans in rye grain using enzymatic hydrolysis. Carbohydr Polym 17:277–284

    Article  CAS  Google Scholar 

  • Ebringerová A, Heinze T (2000) Naturally occuring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  • Eronen P, Heikkinen S, Österberg M, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290

    Article  CAS  Google Scholar 

  • Gatenholm P, Bodin A, Gröndahl M, Dammström S, Eriksson L (2008) Polymeric film or coating comprising hemicellulose. Patent US 7427643 B2, Sep 23, 2008

  • Gröndahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Biomacromolecules 5:1528–1535

    Article  Google Scholar 

  • Gröndahl M, Eriksson L, Gatenholm P, Hjertberg T (2008) Polymeric film or coating comprising hemicellulose. Patent Application WO2008103123 A2, Aug 28, 2008

  • Guilbert S, Gontard N, Gorris LGM (1996) Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT Food Sci Technol 29:10–17

    Article  CAS  Google Scholar 

  • Guinier A (1994) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. Dover Publications Inc., New York

    Google Scholar 

  • Hettrich K, Fischer S, Schröder N, Engelhardt J, Drechsler U, Loth F (2006) Derivatization and characterization of xylan from oat spelts. Macromol Symp 232:37–48

    Article  CAS  Google Scholar 

  • Höije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromolecules 9:2042–2047

    Article  Google Scholar 

  • Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48

    Article  CAS  Google Scholar 

  • Köhnke T, Pujolras C, Roubroeks JP, Gatenholm P (2008) The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres. Cellulose 15:537–546

    Article  Google Scholar 

  • Köhnke T, Östlund Å, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromolecules 12:2633–2641

    Article  Google Scholar 

  • Mikkonen KS, Rita H, Helén H, Talja RA, Hyvönen L, Tenkanen M (2007) Effect of polysaccharide structure on mechanical and thermal properties of galactomannan-based films. Biomacromolecules 8:3198–3205

    Article  CAS  Google Scholar 

  • Mikkonen KS, Heikkinen S, Soovre A, Peura M, Serimaa R, Talja RA, Helén H, Hyvönen L, Tenkanen M (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114:457–466

    Article  CAS  Google Scholar 

  • Mikkonen KS, Heikkilä MI, Helén H, Hyvönen L, Tenkanen M (2010a) Spruce galactoglucomannan films show promising barrier properties. Carbohydr Polym 79:1107–1112

    Article  CAS  Google Scholar 

  • Mikkonen KS, Mathew AP, Pirkkalainen K, Serimaa R, Xu C, Willför S, Oksman K, Tenkanen M (2010b) Glucomannan composite films with cellulose nanowhiskers. Cellulose 17:69–81

    Article  CAS  Google Scholar 

  • Mikkonen KS, Stevanic JS, Joly C, Dole P, Pirkkalainen K, Serimaa R, Salmén L, Tenkanen M (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726

    Article  CAS  Google Scholar 

  • Nieduszynski IA, Marchessault RH (1972) Structure of β, D(1 → 4′)-xylan hydrate. Biopolymers 11:1335–1344

    Article  CAS  Google Scholar 

  • Nisperos-Carriedo M (1994) Edible coatings and films based on polysaccharides. In: Baldwin EA, Nisperos-Carriedo M, Krochta JM (eds) Edible coatings and films to improve food quality. Technomic Publishing Company, Lancaster, pp 305–335

    Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola M, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Peng X, Ren J, Zhong L, Sun R (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12:3321–3329

    Article  CAS  Google Scholar 

  • Pitkänen L, Virkki L, Tenkanen M, Tuomainen P (2009) Comprehensive multidetector HPSEC study on solution properties of cereal arabinoxylans in aqueous and DMSO solutions. Biomacromolecules 10:1962–1969

    Article  Google Scholar 

  • Ramírez F, Puls J, Zúñiga V, Saake B (2008) Sorption of corn cob and oat spelt arabinoxylan onto softwood kraft pulp. Holzforschung 62:329–337

    Article  Google Scholar 

  • Saxena A, Elder TJ, Pan S, Ragauskas AJ (2009) Novel nanocellulosic xylan composite film. Composites Part B 40:727–730

    Article  Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund L (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198

    Article  CAS  Google Scholar 

  • Shen L, Patel MK (2008) Life cycle assessment of polysaccharide materials: a review. J Polym Environ 16:154–167

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry fundamentals and applications. Academic Press, Inc., San Diego

    Google Scholar 

  • Sternemalm E, Höije A, Gatenholm P (2008) Effect of arabinose substitution on the material properties of arabinoxylan films. Carbohydr Res 343:753–757

    Article  CAS  Google Scholar 

  • Stevanic JS, Joly C, Mikkonen KS, Pirkkalainen K, Serimaa R, Rémond C, Toriz G, Gatenholm P, Tenkanen M, Salmén L (2011) Bacterial nanocellulose-reinforced arabinoxylan films. J Appl Polym Sci 122:1030–1039

    Article  CAS  Google Scholar 

  • Sun RC, Tomkinson J, Wang YX, Xiao B (2000) Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer 41:2647–2656

    Article  CAS  Google Scholar 

  • Sundberg A, Sundberg K, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Pap Res J 11(216–219):226

    Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  Google Scholar 

  • Willför S, Sundberg K, Tenkanen M, Holmbom B (2008) Spruce-derived mannans: a potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72:197–210

    Article  Google Scholar 

  • Zhang Y, Pitkänen L, Douglade J, Tenkanen M, Remond C, Joly C (2011) Wheat bran arabinoxylans: chemical structure and film properties of three isolated fractions. Carbohydr Polym 86:1230–1235

    Article  Google Scholar 

Download references

Acknowledgments

The Academy of Finland and Formas are gratefully acknowledged for funding through the Wood Wisdom-Net Programme. COST Action FP0901 is thanked for funding of the Short Term Scientific Mission for KSM to Innventia, Sweden. Novozymes A/S is acknowledged for supplying the α-l-arabinofuranosidase. We thank Mikael Ankerfors (Innventia) for the preparation MFC, Mari Heikkilä (University of Helsinki) for assistance in the enzymatic treatments, and Hanna Komu and Susanna Heikkinen (University of Helsinki) for the determination of the AX composition of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsi S. Mikkonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikkonen, K.S., Pitkänen, L., Liljeström, V. et al. Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose. Cellulose 19, 467–480 (2012). https://doi.org/10.1007/s10570-012-9655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9655-y

Keywords

Navigation