We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Fast computation of complete elliptic integrals and Jacobian elliptic functions

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

As a preparation step to compute Jacobian elliptic functions efficiently, we created a fast method to calculate the complete elliptic integral of the first and second kinds, K(m) and E(m), for the standard domain of the elliptic parameter, 0 < m < 1. For the case 0 < m < 0.9, the method utilizes 10 pairs of approximate polynomials of the order of 9–19 obtained by truncating Taylor series expansions of the integrals. Otherwise, the associate integrals, K(1 − m) and E(1 − m), are first computed by a pair of the approximate polynomials and then transformed to K(m) and E(m) by means of Jacobi’s nome, q, and Legendre’s identity relation. In average, the new method runs more-than-twice faster than the existing methods including Cody’s Chebyshev polynomial approximation of Hastings type and Innes’ formulation based on q-series expansions. Next, we invented a fast procedure to compute simultaneously three Jacobian elliptic functions, sn(u|m), cn(u|m), and dn(u|m), by repeated usage of the double argument formulae starting from the Maclaurin series expansions with respect to the elliptic argument, u, after its domain is reduced to the standard range, 0 ≤ u < K(m)/4, with the help of the new method to compute K(m). The new procedure is 25–70% faster than the methods based on the Gauss transformation such as Bulirsch’s algorithm, sncndn, quoted in the Numerical Recipes even if the acceleration of computation of K(m) is not taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Abad A., Belizon F.: Application of the Gauss’ method to the stellar three body problem. Celest. Mech. Dyn. Astron 68, 43–51 (1997)

    Article  MATH  ADS  Google Scholar 

  • Abramowitz, M., Stegun, I.A. (eds.): Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Chapter 17. Dover, New York, tenth GPO printing (1964)

    Google Scholar 

  • Alberti A., Vidal C.: Dynamics of a particle in a gravitational field of a homogeneous annulus disk. Celest. Mech. Dyn. Astron 98, 75–93 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Barkin Yu.V.: Unperturbed chandler motion and perturbation theory of the rotation motion of deformable celestial bodies. Astron. Astrophys. Trans. 17, 179–219 (1999)

    ADS  Google Scholar 

  • Brasser R.: Some properties of a two-body system under the influence of the galactic tidal field. Mon. Not. R. Astron. Soc. 324, 1109–1116 (2001)

    Article  ADS  Google Scholar 

  • Breiter S., Buciora M.: Explicit symplectic integrator for rotating satellites. Celest. Mech. Dyn. Astron. 77, 127–137 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Brumberg V.A., Brumberg E.: Elliptic anomaly in constructing long-term and short-term dynamical theories. Celest. Mech. Dyn. Astron. 80, 159–166 (2001)

    Article  MATH  ADS  Google Scholar 

  • Brumberg E., Fukushima T.: Expansions of elliptic motion based on elliptic function theory. Celest. Mech. Dyn. Astron. 60, 69–89 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bulirsch R.: Numerical computation of elliptic integrals and elliptic functions. Numer. Math. 7, 78–90 (1965a)

    Article  MATH  MathSciNet  Google Scholar 

  • Bulirsch R.: Numerical computation of elliptic integrals and elliptic functions II. Numer. Math. 7, 353–354 (1965b)

    Article  MATH  MathSciNet  Google Scholar 

  • Bulirsch R.: An extension of the Bartky-transformation to incomplete elliptic integrals of the third kind. Numer. Math. 13, 266–284 (1969a)

    Article  MATH  MathSciNet  Google Scholar 

  • Bulirsch R.: Numerical computation of elliptic integrals and elliptic functions III. Numer. Math. 13, 305–315 (1969b)

    Article  MATH  MathSciNet  Google Scholar 

  • Byrd P.F., Friedman M.D.: Handbook on Elliptic Integrals for Engineers and Physicistsm, 2nd edn. Springer, Berlin (1971)

    Google Scholar 

  • Carlson B.C.: Elliptic integrals of the first kind. SIAM J. Math. Anal. 8, 231–242 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  • Carlson B.C.: Short proofs of three theorems on elliptic integrals. SIAM J. Math. Anal. 9, 524–528 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  • Carlson B.C.: Computing elliptic integrals by duplication. Numer. Math. 33, 1–16 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  • Carlson B.C., Notis E.M.: Algorithm 577. Algorithms for incomplete elliptic integrals. ACM Trans. Math. Softw. 7, 398–403 (1981)

    Article  MATH  Google Scholar 

  • Cavas J.A., Vigueras A.: An integrable case of a rotational motion analogous to that of Lagrange and Poisson for a gyrostat in a newtonian force field. Celest. Mech. Dyn. Astron. 60, 317–330 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Chapront J., Simon J.-L.: Planetary theories with the aid of the expansions of elliptic functions. Celest. Mech. Dyn. Astron. 63, 171–188 (1996)

    MATH  ADS  Google Scholar 

  • Cody W.J.: Chebyshev approximations for the complete elliptic integrals K and E. Math. Comp. 19, 105–112 (1965a)

    Article  MATH  MathSciNet  Google Scholar 

  • Cody W.J.: Chebyshev polynomial expansions of complete elliptic integrals K and E. Math. Comp. 19, 249–259 (1965b)

    Article  MATH  MathSciNet  Google Scholar 

  • Cody W.J.: Corrigenda: Chebyshev approximations for the complete elliptic integrals K and E. Math. Comp. 20, 207 (1966)

    Article  Google Scholar 

  • Conway J.T.: Analytical solutions for the Newtonian gravitational field induced by matter within axisymmetric boundaries. Mon. Not. R. Astron. Soc. 316, 540–554 (2000)

    Article  ADS  Google Scholar 

  • El-Sabaa F.M.F.: Periodic solutions in the Kovalevskaya case of a rigid body in rotation about a fixed point. Astrophys. Space Sci. 193, 309–315 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Elipe A., Lanchares V.: Exact solution of a triaxial gyrostat with one rotor. Celest. Mech. Dyn. Astron. 101, 49–68 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Erdi B., Kovacs J.: A fourth-order solution of the ideal resonance. Celest. Mech. Dyn. Astron. 56, 221–230 (1993)

    Article  MATH  ADS  Google Scholar 

  • Fukushima T.: Generalization of Encke’s method and its application to the orbital and rotational motions of celestial bodies. Astron. J. 112, 1263–1277 (1996)

    Article  ADS  Google Scholar 

  • Fukushima T.: Simple, regular, and efficient numerical integration of rotational motion. Astron. J. 135, 2298–2322 (2008a)

    Article  ADS  Google Scholar 

  • Fukushima T.: Gaussian element formulation of short-axis-mode rotation of a rigid body. Astron. J. 136, 649–653 (2008b)

    Article  ADS  Google Scholar 

  • Fukushima T.: Canonical and universal elements of rotational motion of triaxial rigid body. Astron. J. 136, 1728–1735 (2008c)

    Article  ADS  Google Scholar 

  • Fukushima T.: Fast computation of Jacobian elliptic functions and incomplete elliptic integrals for constant values of elliptic parameter and elliptic characteristic. Celest. Mech. Dyn. Astron. 105, 245–260 (2009a)

    Article  Google Scholar 

  • Fukushima T.: Efficient solution of initial-value problem of torque-free rotation. Astron. J. 137, 210–218 (2009b)

    Article  ADS  Google Scholar 

  • Gair J.R.: Spherical universes with anisotropic pressure. Class. Quantum Grav. 18, 4897–4919 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Halburd R.: Solvable models of relativistic charged spherically symmetric fluids. Class. Quantum Grav. 18, 11–25 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hastings C. Jr: Approximations for Digital Computers. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  • Hellstrom C., Mikkola S.: Satellite attitude dynamics and estimation with the implicit midpoint method. New Astron. 14, 467–477 (2009)

    Article  ADS  Google Scholar 

  • Hure J.-M.: Solutions of the axi-symmetric Poisson equation for elliptic integrals I. Numerical splitting methods. Astron. Astrophys. 434, 1–15 (2005)

    Article  ADS  Google Scholar 

  • Hure J.-M., Hersant F., Carreau C., Busset J.-P.: A new equation for the mid-plane potential of power-law discs II. Exact solutions and approximate formulae. Astron. Astrophys. 490, 477–486 (2008)

    Article  MATH  ADS  Google Scholar 

  • Hure J.-M., Pierens A., Hersant F.: Self-gravity at the scale of the polar cell. Astron. Astrophys. 500, 617–620 (2009)

    Article  MATH  ADS  Google Scholar 

  • Innes R.T.A.: Jacobi’s Nome (q) in astronomical formulae with numerical tables. Mon. Not. R. Astron. Soc. 62, 494–503 (1902)

    ADS  Google Scholar 

  • Kinoshita H.: Analytical expansions of torque-free motions for short and long axis modes. Celest. Mech. Dyn. Astron. 53, 365–375 (1992)

    Article  MATH  ADS  Google Scholar 

  • Krogh F.T., Ng E.W., Snyder W.V.: The gravitational field of a disk. Celest. Mech. 26, 395–405 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Maharaj S.D., Leach P.G.L., Maartens R.: Expanding spherically symmetric models without shear. Gen. Relativ. Grav. 28, 35–50 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Moshier, S.L.: Cephes math library: release 2.8. http://www.alglib.net/specialfunctions/ellipticintegrals.php (2000)

  • Musen P.: A discussion of Hill’s method of secular perturbation and its application to the determination of the zero-rank effects in non-singular vectorial elements of a planetary motion. Celest. Mech. 2, 41–59 (1970)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Nieves-Chinchilla T., Vinas A.-F., Hidalgo M.A.: Magnetic field profiles within magnetic clouds: a model-approach. Earth Moon Planets 104, 109–113 (2009)

    Article  MATH  ADS  Google Scholar 

  • Nolan B.C.: A point mass in an isotropic universe: existence, uniqueness, and basic properties. Phys. Rev. D 58(064006), 1–10 (1998)

    MathSciNet  Google Scholar 

  • Osborne M.R., Smyth K.: A modified Prony algorithm for fitting functions defined by difference equations. SIAM J. Sci. Stat. Comput. 12, 362–382 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Pierens A., Hure J.-M.: Rotation curves of galactic disks for arbitrary surface density profiles: a simple and efficient recipes. Astrophys. J. 605, 179–182 (2004)

    Article  ADS  Google Scholar 

  • Pierens A., Hure J.-M.: Solutions of the axi-symmetric Poisson equation for elliptic integrals II. Semi-Anal. Approach. Astron. Astrophys. 434, 17–23 (2005)

    Article  ADS  Google Scholar 

  • Poleshchikov S.M.: One integrable case of the perturbed two-body problem. Cosmic. Res. 42, 398–407 (2004)

    Article  ADS  Google Scholar 

  • Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  • Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  • Scheeres D.J., Hu W.: Secular motion in a 2nd degree and order-gravity field with rotation. Celest. Mech. Dyn. Astron. 79, 183–200 (2001)

    Article  MATH  ADS  Google Scholar 

  • Sussman R.A., Triginer J.: Exact solutions of Einstein’s equations with ideal gas sources. Class. Quantum Grav. 16, 167–187 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Varvoglis H., Vozikis C., Wodnar K.: The two fixed centers: an exceptional integrable system. Celest. Mech. Dyn. Astron. 89, 343–356 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • van de Ven G., Hunter C., Verolme E.K., de Zeeuw P.T.: General solution of the Jeans equations for triaxial galaxies with separable potentials. Mon. Not. R. Astron. Soc. 342, 1056–1082 (2003)

    Article  ADS  Google Scholar 

  • Viergutz S.U.: Image generation in Kerr Geometry I. analytical investigations on the stationary emitter-observer problem. Astron. Astrophys. 272, 355–375 (1993)

    MathSciNet  ADS  Google Scholar 

  • Vokrouhlicky D., Karas V.: A star orbiting around a supermassive rotating black hole: free motion and corrections due to star-disc collisions. Mon. Not. R. Astron. Soc. 265, 365–378 (1993)

    ADS  Google Scholar 

  • Wolfram S.: The Mathematica Book, 5th edn. Wolfram Research Inc./Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukushima, T. Fast computation of complete elliptic integrals and Jacobian elliptic functions. Celest Mech Dyn Astr 105, 305–328 (2009). https://doi.org/10.1007/s10569-009-9228-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-009-9228-z

Keywords

Navigation