Skip to main content
Log in

Evaluation of the Interest of NiMo Catalysts Supported on MgO–TiO2 for Hydrodesulfurization Applications

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of NiMo catalysts supported on MgO–TiO2 (5 mol% TiO2) were prepared and evaluated in hydrodesulfurization applications. The MgO–TiO2 support was obtained by the sol–gel method. The as-obtained MgO–TiO2 support was then impregnated with nickel nitrate, Ni(NO3)2.6H2O and ammonium heptamolybdate, (NH4)6Mo7O24.4H2O aqueous solutions at pH 9 and pH 5. Subsequently, catalysts were characterized at each step of the preparation: after drying and calcination steps using UV–vis diffuse reflectance (UV–vis-DRS) and Raman spectroscopies and after sulfidation by X-ray photoelectron spectroscopy and transmission electron microscopy. The resulting NiMo catalysts were evaluated in hydrodesulfurization, using thiophene (TP) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) as representative sulfur-containing screening molecules. Finally, catalysts were evaluated in a light cycle oil (LCO) hydrodesulfurization reaction. The pH of the impregnation solution of Ni and Mo precursors influences only slightly the nature of the Ni and Mo species formed. Moreover, in both cases, a significant proportion of nickel is lost into spinel compounds leading to a lower propensity of Ni to be accommodated on the edges of MoS2 slabs decreasing the ability to sulfide correctly the NiMo catalysts. Therefore, MgO appears as a too strong interacting support consuming nickel and forming HDS inactive phases even if the addition of TiO2 tends to enhance textural properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ristovski ZD, Jayaratne ER, Lim M, Ayoko GA, Morawska L (2006) Influence of diesel fuel sulfur on nanoparticle emissions from City buses. Environ Sci Technol 40:1314–1320

    Article  CAS  PubMed  Google Scholar 

  2. Berhault G (2016) Metal sulfides: novel synthesis methods and recent developments, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  3. Bej SK, Maity SK, Turaga UD (2004) Search for an efficient 4,6-DMDBT hydrodesulfurization catalysts: a review of recent studies. Energy Fuels 18:1227–1237

    Article  CAS  Google Scholar 

  4. Topsøe H, Clausen BS, Massoth FE (1996) Hydrotreating catalysis, 1st edn. Springer, Berlin

    Google Scholar 

  5. Ho TC, McConnachie JM (2011) Ultra-deep hydrodesulfurization on MoS2 and Co0.1MoS2: intrinsic vs environmental factors. J Catal 277:117–122. https://doi.org/10.1016/j.jcat.2010.10.017

    Article  CAS  Google Scholar 

  6. Schuit GCA, Gates BCA (1973) Chemistry and engineering of catalytic hydrodesulfurization. AIChE J 19:417–438

    Article  CAS  Google Scholar 

  7. Schulz H, Böhringer W, Ousmanov F, Waller P (1999) Refractory sulfur compounds in gas oils. Fuel Proc Technol 61:5–41

    Article  CAS  Google Scholar 

  8. Topsøe N, Topsøe H (1983) Characterization of the structures and active sites in sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts by no chemisorption. J Catal 84:386–401

    Article  Google Scholar 

  9. Kibsgaard J, Tuxen A, Knudsen KG, Brorson M, Topsøe H, Lægsgaard E, Lauritsen JV, Besenbacher F (2010) Comparative atomic-scale analysis of promotional effects by late 3d-transition metals in MoS2 hydrotreating catalysts. J Catal 272:195–203. https://doi.org/10.1016/j.jcat.2010.03.018

    Article  CAS  Google Scholar 

  10. Araki Y, Honna K, Shimada H (2002) Formation and catalytic properties of edge-bonded molybdenum sulfide catalysts on TiO2. J Catal 207:361–370. https://doi.org/10.1006/jcat.2002.3534

    Article  CAS  Google Scholar 

  11. Eijsbouts S, Mayo SW, Fujita K (2007) Unsupported transition metal sulfide catalysts: from fundamentals to industrial application. Appl Catal A 322:58–66. https://doi.org/10.1016/j.apcata.2007.01.008

    Article  CAS  Google Scholar 

  12. Bailly ML, Chizallet C, Costentin G, Krafft JM, Lauron-Pernot H, Che M (2005) A spectroscopy and catalysis study of the nature of active sites of MgO catalysts: thermodynamic Brønsted basicity versus reactivity of basic sites. J Catal 235:413–422. https://doi.org/10.1016/j.jcat.2005.09.004

    Article  CAS  Google Scholar 

  13. Cinibulk J, Kooyman PJ, Vít Z, Zdrazil M (2003) Magnesia-supported Mo, CoMo and NiMo catalysts prepared by nonaqueous impregnation: parallel HDS/HDN of thiophene and pyridine and TEM microstructure. Catal Lett 89:147–152

    Article  CAS  Google Scholar 

  14. Yu AP, Myers EC (1979) US Patent 4, 132,632

  15. Bertolacini RJ, Sue-A-Quan TA (1979) US Patent 4, 140, 626

  16. Chary KVR, Ramakrishna H, Rama-Rao KS, Dhar GM, Rao PK (1991) Hydrodesulfurization on MoS2/MgO. Catal Lett 10:27–34

    Article  CAS  Google Scholar 

  17. Kaluža L, Vít Z, Zdražil M (2005) Preparation and properties of filled monolayer of MoO3 deposited on Al2O3 supports by solvent-assisted spreading. Appl Catal A 282:247–253. https://doi.org/10.1016/j.apcata.2004.12.019

    Article  CAS  Google Scholar 

  18. Gandubert AD, Legens C, Guillaume D, Payen E (2006) X-ray photoelectron spectroscopy surface quantification of sulfided CoMoP catalysts. relation between activity and promoted sites. Part II: influence of the sulfidation temperature. Surf Interface Anal 38:206–209

    Article  CAS  Google Scholar 

  19. Yen PC, Huang YS, Tiong KK (2004) The growth and characterization of rhenium-doped WS2 single crystals. J Phys 16:2171–2180

    CAS  Google Scholar 

  20. Okamoto Y, Imanaka T, Teranishi S (1980) Surface structure of CoO-MoO3/Al2O3 catalysts studied by X-ray photoelectron spectroscopy. J Catal 65:448–460

    Article  CAS  Google Scholar 

  21. Weber TH, Muijsers JC, van Wolput JHMC, Verhagen CPJ, Niemantsverdriet JW (1996) Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy. J Phys Chem 100:14144–14150

    Article  CAS  Google Scholar 

  22. Ninh TKT, Massin L, Laurenti D, Vrinat M (2011) A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts. Appl Catal A 407:29–39. https://doi.org/10.1016/j.apcata.2011.08.019

    Article  CAS  Google Scholar 

  23. Bui NQ, Geantet C, Berhault G (2015) Maleic acid, an efficient additive for the activation of regenerated CoMo/Al2O3 hydrotreating catalysts. J Catal 330:374–386. https://doi.org/10.1016/j.jcat.2015.07.031

    Article  CAS  Google Scholar 

  24. Payen E, Hubaut R, Kasztelan S, Poulet O, Grimblot J (1994) Morphology study of MoS2− and WS2− based hydrotreating catalysts by high-resolution electron microscopy. J Catal 147:123–132

    Article  CAS  Google Scholar 

  25. Contreras-Valdez Z, Mogica-Betancourt JC, Alvarez-Hernández A, Guevara-Lara A (2013) Solvent effects on dibenzothiophene hydrodesulfurization: differences between reactions in liquid or gas phase. Fuel 106:519–527. https://doi.org/10.1016/j.fuel.2012.12.012

    Article  CAS  Google Scholar 

  26. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Sufrace area and pore texture of catalysts. Catal Today 41:207–219

    Article  CAS  Google Scholar 

  27. López T, Hernández J, Gómez R, Bokhimi X, Boldú JL, Muñoz E, Novaro O, García-Ruíz A (1999) Synthesis and characterization of TiO2–MgO mixed oxides prepared by the sol–gel method. Langmuir 15:5689–5693

    Article  CAS  Google Scholar 

  28. Hunter RJ (1981) Zeta potential in colloid science: principles and applications. In: Ottewill RH, Rowell RL (eds) Colloid science series, 1st edn. Academic Press, New York

    Google Scholar 

  29. Llorente JMM, Rives V, Malet P, Gil-Llambias FJ (1992) MoO3/MgO systems: effect of preparation method on their physicochemical properties. J Catal 135:1–12

    Article  CAS  Google Scholar 

  30. Guevara-Lara A, Bacaud R, Vrinat M (2007) Highly active NiMo/TiO2-Al2O3 catalysts: influence of the preparation and the activation conditions on the catalytic activity. Appl Catal A 328:99–108

    Article  CAS  Google Scholar 

  31. Hu H, Wachs IE (1995) Catalytic properties of supported molybdenum oxide catalysts: in situ Raman and methanol oxidation studies. J Phys Chem 99:10911–10922

    Article  CAS  Google Scholar 

  32. López-Benítez A, Berhault G, Guevara-Lara A (2016) Addition of manganese to alumina and its influence on the formation of supported NiMo catalysts for dibenzothiophene hydrodesulfurization application. J Catal 344:59–76. https://doi.org/10.1016/j.jcat.2016.08.015

    Article  CAS  Google Scholar 

  33. Alstrup IB, Chorkendorff IB, Candia R, Clausen BS, Topsøe H (1982) A combined X-Ray photoelectron and Mossbauer emission spectroscopy of the state of cobalt in sulfided, supported, and unsupported Co-Mo catalysts. J Catal 77:397–409

    Article  CAS  Google Scholar 

  34. Sakashita Y (2001) Effects of surface orientation and crystallinity of alumina supports on the microstructures of molybdenum oxides and sulfides. Surf Sci 489:45–58

    Article  CAS  Google Scholar 

  35. Mogica-Betancourt JC, López-Benítez A, Montiel-López JR, Massin L, Aouine M, Vrinat M, Berhault G, Guevara-Lara A (2014) Interaction effects of nickel polyoxotungstates with Al2O3–MgO support for application in dibenzothiophene hydrodesulfurization. J Catal 313:9–23

    Article  CAS  Google Scholar 

  36. Roukoss C, Laurenti D, Devers E, Marchand K, Massin L, Vrinat M (2009) Hydrodesulfurization catalysts: promoters, promoting methods and support effect on catalytic activities. C R Chim 12:683–691

    Article  CAS  Google Scholar 

  37. Coulier L, Kishan G, van Veen JAR, Niemantsverdriet J (2002) Influence of support-interaction on the sulfidation behavior and hydrodesulfurization activity of Al2O3-supported W, CoW, and NiW model catalysts. J Phys Chem. B 106:5897–5906

    Article  CAS  Google Scholar 

  38. Blanchard L, Grimblot J, Bonnelle JP (1986) X-ray photoelectron spectroscopy studies on nickel-tungsten mixed sulfide catalysts. J Catal 98:229–234

    Article  CAS  Google Scholar 

  39. Espinós JP, González-Elipe AR, Munuera G (1993) Diffusion of nickel and Surface reconstruction in Ni/TiO2 catalysts promoted by H2 and O2 treatments. Solid State Ionics 63–65:748–754

    Article  Google Scholar 

  40. Girgis MJ, Gates BC (1991) Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing. Ind Eng Chem Res 30:2021–2058

    Article  CAS  Google Scholar 

  41. Vrinat ML (1983) The kinetics of the hydrodesulfurization process- A review. Appl Catal 6:137–158

    Article  CAS  Google Scholar 

  42. Meille V, Schulz E, Lemaire M, Vrinat M (1997) Hydrodesulfurization of alkyldibenzothiophenes over a NiMo/Al2O3 catalyst: kinetics and mechanism. J Catal 170:29–36

    Article  CAS  Google Scholar 

  43. Oyama ST, Lee YK (2008) The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT. J Catal 258:393–400. https://doi.org/10.1016/j.jcat.2008.06.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge for their support of SEP-CONACYT-ECOS-ANUIES program referenced No. 275186 and CONACYT referenced No. 256345/CB-2015-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Guevara-Lara.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Benítez, A., Berhault, G., Silva-Rodrigo, R. et al. Evaluation of the Interest of NiMo Catalysts Supported on MgO–TiO2 for Hydrodesulfurization Applications. Catal Lett 149, 2656–2670 (2019). https://doi.org/10.1007/s10562-019-02831-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02831-6

Keywords

Navigation