Skip to main content
Log in

Preparation, Characterization and Catalytic Activities of Immobilized Enzyme Mimics

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In order to find highly active and selective oxygen-transfer catalysts with appreciable durability, Cu(II)–histidine complexes were covalently grafted onto a chlorinated polystyrene resin as copper-containing enzyme mimics. The Cu(II)-histidine complexes and the mobile polymer were to resemble the active center and the proteomic skeleton of the enzymes, respectively. The resulting heterogenized complexes were expected to be nearly so active and more durable catalysts that are easier to recycle than their homogeneous counterparts. The substances were tested in a superoxide radical anion dismutation reaction. Control for the syntheses was exerted by protecting either the N-terminal or the C-terminal of the covalently grafted l-histidine molecules. During the preparative work generally applied methods of synthetic organic chemistry (alkylation or esterification) were used. Various anchored complexes were prepared and characterized by classical analytical methods, different forms of spectroscopy as well as molecular modeling. The covalently grafted complexes having the protected amino acids as ligands displayed remarkably high activities in the superoxide dismutase (SOD) test reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Malström BG, Andreasson LE, Reinhammer B (1975) In: Enzymes Academic Press, New York, p 533

  2. Tainer JA, Getzoff ED, Richardson JS, Richardson DC (1983) Nature 306:284

    Article  CAS  Google Scholar 

  3. Piacham T, Ayudhya CIN, Prachayasitticul V, Bulow L, Ye L (2003) Chem Commun 1254

  4. Bellot F, Hardre L, Pelosi G, Therisod M, Policar C (2005) Chem Commun 5414

  5. Holm RH, Kennepohl P, Solomon E (1996) Chem Rev 96:2239

    Article  CAS  Google Scholar 

  6. Dupeyrat F, Vidaud C, Lorphelin A, Berthomieu C (2004) J Biol Chem 279:48091

    Article  CAS  Google Scholar 

  7. Weinstein J, Bielski BHJ (1980) J Am Chem Soc 102:4916

    Article  CAS  Google Scholar 

  8. Szilágyi I, Labádi I, Hernadi K, Kiss T, Pálinkó I (2005) Stud Surf Sci Catal 158:1011

    Article  Google Scholar 

  9. Jakab IN, Hernadi K, Méhn D, Kollár T, Pálinkó I (2003) J Mol Struct 651–653:109

    Article  CAS  Google Scholar 

  10. Mesu JG, Visser T, Beale AM, Soulimani F, Weckhuysen BM (2006) Chem Eur J 12:7167

    Article  CAS  Google Scholar 

  11. Jakab IN, Hernadi K, Kiss JT, Pálinkó I (2005) J Mol Struct 744–747:487

    Article  CAS  Google Scholar 

  12. Beauchamp C, Fridovich I (1971) Anal Biochem 44:276

    Article  CAS  Google Scholar 

  13. Rockenbauer A, Korecz L (1996) Appl Magn Reson 10:29

    Article  CAS  Google Scholar 

  14. Szilágyi I, Labádi I, Hernadi K, Pálinkó I, Fekete I, Korecz L, Rockenbauer A, Kiss T (2005) New J Chem 29:740

    Article  CAS  Google Scholar 

  15. Sundberg RJ, Martin RB (1974) Chem Rev 74:471

    Article  CAS  Google Scholar 

  16. Deschamps P, Kulkarni PP, Sarkar B (2004) Inorg Chem 43:3338

    Article  CAS  Google Scholar 

  17. Deschamps P, Kulkarni PP, Gautam-Basak M, Sarkar B (2005) Coord Chem Rev 249:895

    Article  CAS  Google Scholar 

  18. Fu L, Weckhuysen BM, Verberckmoes AA, Schoonheydt RA (1996) Clay Miner 31:491

    Article  CAS  Google Scholar 

  19. Grommen R, Manikandan P, Gao Y, Shane T, Shane JJ, Schoonheydt RA, Weckhuysen BM, Goldfarb D (2000) J Am Chem Soc 122:11488

    Article  CAS  Google Scholar 

  20. Weckhuysen BM, Verberckmoes AA, Fu L, Schoonheydt RA (1996) J Phys Chem 100:9456

    Article  CAS  Google Scholar 

  21. Weckhuysen BM, Verberckmoes AA, Vannijvel IP, Pelgrims JA, Buskens PL, Jacobs PA, Schoonheydt RA (1995) Angew Chem Int Ed Eng 34:2652

    Article  CAS  Google Scholar 

  22. Li D, Li S, Yang D, Yu J, Huang J, Li Y, Tang W (2003) Inorg Chem 42:6071

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Fund of Hungary through grant K62288. The financial help is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Pálinkó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szilágyi, I., Berkesi, O., Sipiczki, M. et al. Preparation, Characterization and Catalytic Activities of Immobilized Enzyme Mimics. Catal Lett 127, 239–247 (2009). https://doi.org/10.1007/s10562-008-9667-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9667-2

Keywords

Navigation