Skip to main content

Advertisement

Log in

ADAMs, cell migration and cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Arribas J, Borroto A: Protein ectodomain shedding. Chem Rev 102: 4627–4638, 2002

    PubMed  CAS  Google Scholar 

  2. Arribas J, Merlos-Suarez A: Shedding of plasma membrane proteins. Curr Top Dev Biol 54: 125–144, 2003

    PubMed  CAS  Google Scholar 

  3. Bao J, Wolpowitz D, Role LW, Talmage DA: Back signaling by the Nrg-1 intracellular domain. J Cell Biol 161: 1133–1141, 2003

    PubMed  CAS  Google Scholar 

  4. Barrett AJ, Rawling ND Woessner JF: Handbook of proteolytic enzymes 2000

  5. Baselga J, Norton L: Focus on breast cancer. Cancer Cell 1: 319–322, 2002

    PubMed  CAS  Google Scholar 

  6. Bax DV, Messent AJ, Tart J, van Hoang M, Kott J, Maciewicz RA, Humphries MJ: Integrin alpha5beta1 and ADAM-17 interact in vitro and co-localize in migrating HeLa cells. J Biol Chem 279: 22377–22386, 2004

    PubMed  CAS  Google Scholar 

  7. Bigler D, Takahashi Y, Chen MS, Almeida EA, Osbourne L, White JM: Sequence-specific interaction between the disintegrin domain of mouse ADAM 2 (fertilin beta) and murine eggs. Role of the alpha(6) integrin subunit. J Biol Chem 275: 11576–11584, 2000

    PubMed  CAS  Google Scholar 

  8. Blanchot-Jossic F, Jarry A, Masson D, Bach-Ngohou K, Paineau J, Denis MG, Laboisse CL, Mosnier JF: Up-regulated expression of ADAM17 in human colon carcinoma: Co-expression with EGFR in neoplastic and endothelial cells. J Pathol 207: 156–163, 2005

    PubMed  CAS  Google Scholar 

  9. Blelloch R, Anna-Arriola SS, Gao D, Li Y, Hodgkin J, Kimble J: The gon-1 gene is required for gonadal morphogenesis in Caenorhabditis elegans. Dev Biol 216: 382–393, 1999

    PubMed  CAS  Google Scholar 

  10. Blelloch R, Kimble J: Control of organ shape by a secreted metalloprotease in the nematode Caenorhabditis elegans. Nature 399: 586–590, 1999

    PubMed  CAS  Google Scholar 

  11. Blobel CP: ADAMs, key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6: 32–43, 2005

    PubMed  CAS  Google Scholar 

  12. Bohm, BB, Aigner, T, Gehrsitz A, Blobel CP, Kalden JR, Burkhardt H: Up-regulation of MDC15 (metargidin) messenger RNA in human osteoarthritic cartilage. Arthritis Rheum 42: 1946–1950, 1999

    PubMed  CAS  Google Scholar 

  13. Borrell-Pagès M, Rojo F, Albanell J, Baselga J, Arribas J: TACE is required for the activation of the EGFR by TGF-alpha in tumors. EMBO J 22: 1114–1124, 2003

    PubMed  Google Scholar 

  14. Bridges LC, Sheppard D, Bowditch RD: ADAM disintegrin-like domain recognition by the lymphocyte integrins alpha4beta1 and alpha4beta7. Biochem J 387: 101–108, 2005

    PubMed  CAS  Google Scholar 

  15. Bridges LC, Tani PH, Hanson KR, Roberts CM, Judkins MB, Bowditch RD: The lymphocyte metalloprotease MDC-L (ADAM 28) is a ligand for the integrin alpha4beta1. J Biol Chem 277: 3784–3792, 2002

    PubMed  CAS  Google Scholar 

  16. Cal S, Freije JM, Lopez JM, Takada Y, Lopez-Otin C: ADAM 23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the alphavbeta3 integrin through an RGD-independent mechanism. Mol Biol Cell 11: 1457–1469, 2000

    PubMed  CAS  Google Scholar 

  17. Carl-McGrath S, Lendeckel U, Ebert M, Roessner A, Rocken C: The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int J Oncol 26: 17–24, 2005

    PubMed  CAS  Google Scholar 

  18. Costa FF, Verbisck NV, Salim AC, Ierardi DF, Pires LC, Sasahara RM, Sogayar MC, Zanata SM, Mackay A, O'Hare M, Soares F, Simpson AJ, Camargo AA: Epigenetic silencing of the adhesion molecule ADAM23 is highly frequent in breast tumors. Oncogene 23: 1481–1488, 2004

    PubMed  CAS  Google Scholar 

  19. Ding, X, Yang, LY, Huang, GW, Wang W, Lu WQ: ADAM17 mRNA expression and pathological features of hepatocellular carcinoma. World J Gastroenterol 10: 2735–2739, 2004

    PubMed  CAS  Google Scholar 

  20. Dong J, Opresko LK, Dempsey PJ, Lauffenburger DA, Coffey RJ, Wiley HS: Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc Natl Acad Sci USA 96: 6235–6240, 1999

    PubMed  CAS  Google Scholar 

  21. Eto, K, Huet C, Tarui T, Kupriyanov S, Liu HZ, Puzon-McLaughlin W, Zhang XP, Sheppard D, Engvall E, Takada Y: Functional classification of ADAMs based on a conserved motif for binding to integrin alpha 9beta 1: implications for sperm-egg binding and other cell interactions. J Biol Chem 277: 17804–17810, 2002

    PubMed  CAS  Google Scholar 

  22. Eto K, Puzon-McLaughlin W, Sheppard D, Sehara-Fujisawa A, Zhang XP, Takada Y: RGD-independent binding of integrin alpha9beta1 to the ADAM-12 and -15 disintegrin domains mediates cell-cell interaction. J Biol Chem 275: 34922–34930, 2000

    PubMed  CAS  Google Scholar 

  23. Fischer OM, Hart S, Gschwind A, Prenzel N, Ullrich A: Oxidative and osmotic stress signaling in tumor cells is mediated by ADAM proteases and heparin-binding epidermal growth factor. Mol Cell Biol 24: 5172–5183, 2004

    PubMed  CAS  Google Scholar 

  24. Fischer OM, Hart S, Gschwind A, Ullrich A: EGFR signal transactivation in cancer cells. Biochem Soc Trans 31: 1203–1208, 2003

    Article  PubMed  CAS  Google Scholar 

  25. Fogel M, Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Smirnov A, Edler L, Ben-Arie A, Huszar M, Altevogt P: L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet 362: 869–875, 2003

    PubMed  CAS  Google Scholar 

  26. Gavert N, Conacci-Sorrell M, Gast D, Schneider A, Altevogt P, Brabletz T, Ben-Ze'ev A: L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 168: 633–642, 2005

    PubMed  CAS  Google Scholar 

  27. Grutzmann R, Foerder M, Alldinger I, Staub E, Brummendorf T, Ropcke S, Li X, Kristiansen G, Jesnowski R, Sipos B, Lohr M, Luttges J, Ockert D, Kloppel G, Saeger HD, Pilarsky C: Gene expression profiles of microdissected pancreatic ductal adenocarcinoma. Virchows Arch 443: 508–517, 2003

    PubMed  Google Scholar 

  28. Guo W, Giancotti FG: Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5: 816–826, 2004

    PubMed  CAS  Google Scholar 

  29. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Illert Lena A, von Figura K, Saftig P: The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11: 2615–2624, 2002

    PubMed  CAS  Google Scholar 

  30. Hattori M, Osterfield M, Flanagan JG: Regulated cleavage of a contact-mediated axon repellent. Science 289: 1360–1365, 2000

    PubMed  CAS  Google Scholar 

  31. Hesselson D, Newman C, Kim KW, Kimble J: GON-1 and fibulin have antagonistic roles in control of organ shape. Curr Biol 14: 2005–2010, 2004

    PubMed  CAS  Google Scholar 

  32. Higashiyama S, Nanba D: ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochim Biophys Acta 1751: 110–117, 2005

    PubMed  CAS  Google Scholar 

  33. Horiuchi K, Zhou HM, Kelly K, Manova K, Blobel CP: Evaluation of the contributions of ADAMs 9, 12, 15, 17, and 19 to heart development and ectodomain shedding of neuregulins beta1 and beta2. Dev Biol 283: 459–471, 2005

    PubMed  CAS  Google Scholar 

  34. Huang, J, Bridges, LC, White JM: Selective modulation of integrin-mediated cell migration by distinct ADAM family members. Mol Biol Cell 16: 4982–4991, 2005

    PubMed  CAS  Google Scholar 

  35. Huovila, AP, Turner AJ, Pelto-Huikko M, Karkkainen I, Ortiz RM: Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30: 413–422, 2005

    PubMed  CAS  Google Scholar 

  36. Hynes RO: Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687, 2002

    PubMed  CAS  Google Scholar 

  37. Iba K, Albrechtsen R, Gilpin BJ, Loechel F, Wewer UM: Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am J Pathol 154: 1489–1501, 1999

    PubMed  CAS  Google Scholar 

  38. Ishikawa N, Daigo Y, Yasui W, Inai K, Nishimura H, Tsuchiya E, Kohno N, Nakamura Y: ADAM8 as a novel serological and histochemical marker for lung cancer. Clin Cancer Res 10: 8363–8370, 2004

    PubMed  CAS  Google Scholar 

  39. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB: Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123: 291–304, 2005

    PubMed  CAS  Google Scholar 

  40. Karan D, Lin FC, Bryan M, Ringel J, Moniaux N, Lin MF, Batra SK: Expression of ADAMs (a disintegrin and metalloproteases) and TIMP-3 (tissue inhibitor of metalloproteinase-3) in human prostatic adenocarcinomas. Int J Oncol 23: 1365–1371, 2003

    PubMed  CAS  Google Scholar 

  41. Kawaguchi N, Sundberg C, Kveiborg M, Moghadaszadeh B, Asmar M, Dietrich N, Thodeti CK, Nielsen FC, Moller P, Mercurio AM, Albrechtsen R, Wewer UM: ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function. J Cell Sci 116: 3893–3904, 2003

    PubMed  CAS  Google Scholar 

  42. Kim IM, Ramakrishna S, Gusarova GA, Yoder HM, Costa RH, alinichenko VV: The forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature. J Biol Chem 280: 22278–22286, 2005

    PubMed  CAS  Google Scholar 

  43. Knosel T, Emde A, Schluns K, Chen Y, Jurchott K, Krause M, Dietel M, Petersen I: Immunoprofiles of 11 biomarkers using tissue microarrays identify prognostic subgroups in colorectal cancer. Neoplasia 7: 741–747, 2005

    PubMed  Google Scholar 

  44. Ko SY, Lin SC, Wong YK, Liu CJ, Chang KW Liu TY: Increase of disintergin metalloprotease 10 (ADAM10) expression in oral squamous cell carcinoma. Cancer Lett, 2005

  45. Kodama T, Ikeda E, Okada, A, Ohtsuka T, Shimoda M, Shiomi T, Yoshida K, Nakada M, Ohuchi E, Okada Y: ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am J Pathol 165: 1743–1753, 2004

    PubMed  CAS  Google Scholar 

  46. Kubota Y, Kuroki R, Nishiwaki K: A fibulin-1 homolog interacts with an ADAM protease that controls cell migration in C. elegans. Curr Biol 14: 2011–2018, 2004

    PubMed  CAS  Google Scholar 

  47. Kubota Y, Sano M, Goda S, Suzuki N, Nishiwaki K: The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 14: 2011–2018, 2005

    Google Scholar 

  48. Kullander K, Klein R: Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3: 475–486, 2002

    PubMed  CAS  Google Scholar 

  49. Kveiborg M, Frohlich C, Albrechtsen R, Tischler V, Dietrich N, Holck P, Kronqvist P, Rank F, Mercurio AM, Wewer UM: A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer Res 65: 4754–4761, 2005

    PubMed  CAS  Google Scholar 

  50. Le Pabic H, Bonnier D, Wewer UM, Coutand A, Musso O, Baffet G, Clement B, Theret N: ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling. Hepatology 37: 1056–1066, 2003

    PubMed  Google Scholar 

  51. Lee NV, Rodriguez-Manzaneque JC, Thai SN, Twal WO, Luque A, Lyons KM, Argraves WS, Iruela-Arispe ML: Fibulin-1 acts as a cofactor for the matrix metalloprotease ADAMTS-1. J Biol Chem 280: 34796–34804, 2005

    PubMed  CAS  Google Scholar 

  52. Lendeckel U, Kohl J, Arndt M, Carl-McGrath S, Donat H, Rocken C: Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J Cancer Res Clin Oncol 131: 41–48, 2005

    PubMed  CAS  Google Scholar 

  53. Linggi B, Cheng QC, Rao AR, Carpenter G: The ErbB-4 s80 intracellular domain is a constitutively active tyrosine kinase. Oncogene 25: 160–163, 2006

    PubMed  CAS  Google Scholar 

  54. Lu Q, Clemetson JM, Clemetson KJ: Snake venoms and hemostasis. J Thromb Haemost 3: 1791–1799, 2005

    PubMed  CAS  Google Scholar 

  55. Mazzocca A, Coppari R, De Franco R, Cho JY, Libermann TA, Pinzani M, Toker AA: Secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res 65: 4728–4738, 2005

    PubMed  CAS  Google Scholar 

  56. Moss ML, Lambert MH: Shedding of membrane proteins by ADAM family proteases. Essays Biochem 38: 141–153, 2002

    PubMed  CAS  Google Scholar 

  57. Nagano O, Murakami D, Hartmann D, De Strooper B, Saftig P, Iwatsubo T, Nakajima M, Shinohara M, Saya H: Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2+) influx and PKC activation. J Cell Biol 165: 893–902, 2004

    PubMed  CAS  Google Scholar 

  58. Nath D, Slocombe PM, Stephens PE, Warn A, Hutchinson GR, Yamada KM, Docherty AJ, Murphy G: Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells. J Cell Sci 112 (Pt 4): 579–587, 1999

    PubMed  CAS  Google Scholar 

  59. Nath D, Slocombe PM, Webster A, Stephens PE, Docherty AJ, Murphy G: Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6)beta(1)integrin, leading to a marked induction of fibroblast cell motility. J Cell Sci 113 (Pt 12): 2319–2328, 2000

    PubMed  CAS  Google Scholar 

  60. Ni CY, Murphy MP, Golde TE, Carpenter G: gamma -Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294: 2179–2181, 2001

    PubMed  CAS  Google Scholar 

  61. Nishiwaki K: Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics 152: 985–997, 1999

    PubMed  CAS  Google Scholar 

  62. Nishiwaki K, Hisamoto N, Matsumoto K: A metalloprotease disintegrin that controls cell migration in Caenorhabditis elegans. Science 288: 2205–2208, 2000

    PubMed  CAS  Google Scholar 

  63. Nishiwaki K, Kubota Y, Chigira Y, Roy SK, Suzuki M, Schvarzstein M, Jigami Y, Hisamoto N, Matsumoto K: An NDPase links ADAM protease glycosylation with organ morphogenesis in C. elegans. Nat Cell Biol 6: 31–37, 2004

    PubMed  CAS  Google Scholar 

  64. O'Shea C, McKie N, Buggy Y, Duggan C, Hill AD, McDermott E, O'Higgins N, Duffy MJ: Expression of ADAM-9 mRNA and protein in human breast cancer. Int J Cancer 105: 754–761, 2003

    PubMed  Google Scholar 

  65. Ohtsuka T, Shiomi T, Shimoda M, Kodama T, Amour A, Murphy G, Ohuchi E, Kobayashi K Okada Y: ADAM28 is overexpressed in human non-small cell lung carcinomas and correlates with cell proliferation and lymph node metastasis. Int J Cancer 118: 263–273, 2006

    PubMed  CAS  Google Scholar 

  66. Peduto L, Reuter VE, Shaffer DR, Scher HI, Blobel CP: Critical function for ADAM9 in mouse prostate cancer. Cancer Res 65: 9312–9319, 2005

    PubMed  CAS  Google Scholar 

  67. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR: Cell migration: Integrating signals from front to back. Science 302: 1704–1709, 2003

    PubMed  CAS  Google Scholar 

  68. Roemer A, Schwettmann L, Jung M, Roigas J, Kristiansen G, Schnorr D, Loening SA, Jung K, Lichtinghagen R: Increased mRNA expression of ADAMs in renal cell carcinoma and their association with clinical outcome. Oncol Rep 11: 529–536, 2004

    PubMed  CAS  Google Scholar 

  69. Roemer A, Schwettmann L, Jung M, Stephan C, Roigas J, Kristiansen G, Loening SA, Lichtinghagen R, Jung K: The membrane proteases adams and hepsin are differentially expressed in renal cell carcinoma. Are they potential tumor markers? J Urol 172: 2162–2166, 2004

    PubMed  CAS  Google Scholar 

  70. Roy R, Wewer UM, Zurakowski D, Pories SE, Moses MA: ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem 279: 51323–51330, 2004

    PubMed  CAS  Google Scholar 

  71. Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, Hartmann D, Saftig P, Blobel CP: Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164: 769–779, 2004

    PubMed  CAS  Google Scholar 

  72. Santiago-Josefat B, Arribas J: Postranscriptional regulation of ADAM17 by EGF treatment (manuscript in preparation)

  73. Schafer B, Marg B, Gschwind A, Ullrich A: Distinct ADAM metalloproteinases regulate G protein-coupled receptor-induced cell proliferation and survival. J Biol Chem 279: 47929–47938, 2004

    PubMed  Google Scholar 

  74. Schutz A, Hartig W, Wobus M, Grosche J, Wittekind C, Aust G: Expression of ADAM15 in lung carcinomas. Virchows Arch 446: 421–429, 2005

    PubMed  CAS  Google Scholar 

  75. Seals DF, Courtneidge SA: The ADAMs family of metalloproteases: Multidomain proteins with multiple functions. Genes Dev 17: 7–30, 2003

    PubMed  CAS  Google Scholar 

  76. Selkoe D, Kopan R: Notch and Presenilin: Regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci 26: 565–597, 2003

    PubMed  CAS  Google Scholar 

  77. Shintani Y, Higashiyama S, Ohta M, Hirabayashi H, Yamamoto S, Yoshimasu T, Matsuda H, Matsuura N: Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis. Cancer Res 64: 4190–4196, 2004

    PubMed  CAS  Google Scholar 

  78. Sieuwerts AM, Meijer-van Gelder ME, Timmermans M, Trapman AM, Garcia RR, Arnold M, Goedheer AJ, Portengen H., Klijn JG, Foekens JA: How ADAM-9 and ADAM-11 differentially from estrogen receptor predict response to tamoxifen treatment in patients with recurrent breast cancer: A retrospective study. Clin Cancer Res 11: 7311–7321, 2005

    PubMed  CAS  Google Scholar 

  79. Soond SM, Everson B, Riches DW, Murphy G: ERK-mediated phosphorylation of Thr735 in TNFalpha-converting enzyme and its potential role in TACE protein trafficking. J Cell Sci 118: 2371–2380, 2005

    PubMed  CAS  Google Scholar 

  80. Stein KK, Go JC, Primakoff P, Myles DG: Defects in secretory pathway trafficking during sperm development in Adam2 knockout mice. Biol Reprod 73: 1032–1038, 2005

    PubMed  CAS  Google Scholar 

  81. Sundberg C, Thodeti CK, Kveiborg M, Larsson C, Parker P, Albrechtsen R, Wewer UM: Regulation of ADAM12 cell-surface expression by protein kinase C epsilon. J Biol Chem 279: 51601–51611, 2004

    PubMed  CAS  Google Scholar 

  82. Surawska H, Ma PC, Salgia R: The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15: 419–433, 2004

    PubMed  CAS  Google Scholar 

  83. Sztul E, Lupashin V: Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290: C11–26, 2006

    PubMed  CAS  Google Scholar 

  84. Takahashi Y, Bigler D, Ito Y, White JM: Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: Role of beta1 integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell 12: 809–820, 2001

    PubMed  CAS  Google Scholar 

  85. Tanaka M, Nanba D, Mori S, Shiba F, Ishiguro H, Yoshino K, Matsuura N, Higashiyama S: ADAM binding protein Eve-1 is required for ectodomain shedding of epidermal growth factor receptor ligands. J Biol Chem 279: 41950–41959, 2004

    PubMed  CAS  Google Scholar 

  86. Tanaka Y, Miyamoto S, Suzuki SO, Oki E, Yagi H, Sonoda K, Yamazaki A, Mizushima H, Maehara Y, Mekada E, Nakano H: Clinical significance of heparin-binding epidermal growth factor-like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clin Cancer Res 11: 4783–4792, 2005

    PubMed  CAS  Google Scholar 

  87. Tanida S, Joh T, Itoh K, Kataoka H, Sasaki M, Ohara H, Nakazawa T, Nomura T, Kinugasa Y, Ohmotov H, Ishiguro H, Yoshino K, Higashiyama S, Itoh M: The mechanism of cleavage of EGFR ligands induced by inflammatory cytokines in gastric cancer cells. Gastroenterology 127: 559–569, 2004

    PubMed  CAS  Google Scholar 

  88. Tannapfel A, Anhalt K, Hausermann P, Sommerer F, Benicke M, Uhlmann D, Witzigmann H, Hauss J, Wittekind C: Identification of novel proteins associated with hepatocellular carcinomas using protein microarrays. J Pathol 201: 238–249, 2003

    PubMed  CAS  Google Scholar 

  89. Thodeti CK, Frohlich C, Nielsen CK, Holck P, Sundberg C, Kveiborg M, Mahalingam Y, Albrechtsen R, Couchman JR, Wewer UM: Hierarchy of ADAM12 binding to integrins in tumor cells. Exp Cell Res 309: 438–450, 2005

    PubMed  CAS  Google Scholar 

  90. Timpl, R, Sasaki T, Kostka G, Chu ML: Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol 4: 479–489, 2003

    PubMed  CAS  Google Scholar 

  91. Tomczuk M, Takahashi Y, Huang J, Murase S, Mistretta M, Klaffky E, Sutherland A, Bolling L, Coonrod S, Marcinkiewicz C, Sheppard D, Stepp MA, White M: Role of multiple beta1 integrins in cell adhesion to the disintegrin domains of ADAMs 2 and 3. Exp Cell Res 290: 68–81, 2003

    PubMed  CAS  Google Scholar 

  92. Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE, Heuser JE, Krieger M, Waters MG: Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157: 405–415, 2002

    PubMed  CAS  Google Scholar 

  93. Villanueva de la Torre T, Bech-Serra JJ, Ruiz-Paz S, Baselga J, Arribas J: Inactivating mutations block the tumor necrosis factor-alpha-converting enzyme in the early secretory pathway. Biochem Biophys Res Commun 314: 1028–1035, 2004

    PubMed  CAS  Google Scholar 

  94. White JM: ADAMs: Modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15: 598–606, 2003

    PubMed  CAS  Google Scholar 

  95. Yarden Y, Sliwkowski MX: Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137, 2001

    PubMed  CAS  Google Scholar 

  96. Yokosaki Y, Matsuura N, Sasaki T, Murakami I, Schneider H, Higashiyama S, Saitoh Y, Yamakido M, Taooka Y, Sheppard D: The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. J Biol Chem 274: 36328–36334, 1999

    PubMed  CAS  Google Scholar 

  97. Yoshimura T, Tomita T, Dixon MF, Axon AT, Robinson PA, Crabtree JE: ADAMs (a disintegrin and metalloproteinase) messenger RNA expression in Helicobacter pylori-infected, normal, and neoplastic gastric mucosa. J Infect Dis 185: 332–340, 2002

    PubMed  CAS  Google Scholar 

  98. Zeng Q, Li S, Chepeha DB, Giordano TJ, Li J, Zhang H, Polverini PJ, Nor J, Kitajewski J, Wang CY: Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 8: 13–23, 2005

    PubMed  CAS  Google Scholar 

  99. Zhang PX, Kamata T, Yokoyama K, Puzon-McLaughlin W, Takada Y: Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphavbeta3. J Biol Chem 273: 7345–7350, 1998

    PubMed  CAS  Google Scholar 

  100. Zhou BB: Targeting Ligand Cleavage to Inhibit the ErbB Pathway in Cancer. Ann NY Acad Sci 1059: 56–60, 2005

    PubMed  CAS  Google Scholar 

  101. Zhou BB, Fridman JS, Liu X, Friedman SM, Newton RC, Scherle PA: ADAM proteases, ErbB pathways and cancer. Expert Opin Investig Drugs 14: 591–606, 2005

    PubMed  CAS  Google Scholar 

  102. Zhou M, Graham R, Russell G, Croucher PI: MDC-9 (ADAM-9/Meltrin gamma) functions as an adhesion molecule by binding the alpha(v)beta(5) integrin. Biochem Biophys Res Commun 280: 574–580, 2001

    PubMed  CAS  Google Scholar 

  103. Zigrino P, Mauch C, Fox JW, Nischt R: Adam-9 expression and regulation in human skin melanoma and melanoma cell lines. Int J Cancer 116: 853–859, 2005

    PubMed  CAS  Google Scholar 

  104. Zimina EP, Bruckner-Tuderman L, Franzke CW: Shedding of collagen XVII ectodomain depends on plasma membrane microenvironment. J Biol Chem 280: 34019–34024, 2005

    PubMed  CAS  Google Scholar 

  105. Zimmermann M, Gardoni F, Marcello E, Colciaghi F, Borroni B, Padovani A, Cattabeni F, Di Luca M: Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines. J Neurochem 90: 1489–1499, 2004

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Arribas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arribas, J., Bech-Serra, J.J. & Santiago-Josefat, B. ADAMs, cell migration and cancer. Cancer Metastasis Rev 25, 57–68 (2006). https://doi.org/10.1007/s10555-006-7889-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-7889-6

Keywords

Navigation