Skip to main content
Log in

Intercomparison and Evaluation of MM5 and Meso-NH mesoscale models in the stable boundary layer

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Atmospheric numerical models depend critically on realistic treatment of the lower boundary conditions. In strongly thermally-stratified conditions, turbulence may be very weak and the models may find it difficult to produce a good forecast near the surface. Under clear skies and for weak synoptic winds the determining factors are the turbulent kinetic energy and surface-layer parameterizations, which can be very different between models. Here, two state-of-the-art mesoscale models (MM5 and Meso-NH) are operated under exactly the same conditions for two different nights over the Duero basin in the Iberian Peninsula: one night with a well-defined synoptic wind and a second with practically no horizontal pressure gradient. The models are inter-compared and checked against available information, and their performances are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Bougeault P and Lacarrère P (1989). Parametrization of orography-induced turbulence in a meso-beta scale model. Mon Wea Rev 117: 1872–1890

    Article  Google Scholar 

  • Conangla L and Cuxart J (2006). On the turbulence in the upper part of the Low-Level Jet: an experimental and numerical study. Boundary-Layer Meteorol 118: 379–400

    Article  Google Scholar 

  • Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM, Vilà J, Redondo JM, Cantalapiedra I and Conangla L (2000a). Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98): A Report. Boundary-Layer Meteorol 96: 337–370

    Article  Google Scholar 

  • Cuxart J, Bougeault P and Redelsperger JL (2000b). A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart J Roy Meteorol Soc 126: 1–30

    Article  Google Scholar 

  • Cuxart J, Jiménez MA and Martínez D (2007). Nocturnal Meso-Beta Basin and Katabatic flows on a Midlatitude Island. Mon Wea Rev 135: 918–932

    Article  Google Scholar 

  • Dudhia J (1993). A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: validation tests and simulation of an Atlantic cyclone and cold front. Mon Wea Rev 121: 1493–1513

    Article  Google Scholar 

  • Dudhia J, Gill D, Manning K, Wang W, Bruyere C (2004) PSU/ NCAR mesoscale modeling system tutorial class notes and user’s guide: MM5 modeling system version 3. NCAR. http://www.mmm.ucar.edu/mm5/documents/tutorial-v3-notes.html.

  • Garratt JR (1975). Limitations of the Eddy-correlation technique for the determination of turbulent fluxes near the surface. Boundary-Layer Meteorol 8: 255–259

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note. NCAR/TN-398+STR

  • Howell JF and Sun J (1999). Surface-layer fluxes in stable conditions. Boundary-Layer Meteorol 90: 495–520

    Article  Google Scholar 

  • Janjic ZI (1994). The step-mountain eta coordinate model: further developments of convection, viscous sublayer and turbulence closure schemes. Mon Wea Rev 122: 927–945

    Article  Google Scholar 

  • Jollife I, Ebert B (2007) How do I know whether one forecast system performs significantly better than another? Available via http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html

  • Lafore JP, Stein J, Asencio N, Bougeault P, Ducronq V, Duron J, Fisher C, Hereil P, Mascart P, Pinty JP, Redespelger JL, Richard E and Vilà-Gueraude Arellano J (1998). The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulation. Annales Geophys 16: 90–109

    Article  Google Scholar 

  • Lee S and Fernando HJS (2004). Evaluation of meteorological models MM5 and HOTMAC using PAFEX-I data. J Appl Meteorol 43: 1133–1148

    Article  Google Scholar 

  • Mahrt L (1982). Momentum balance of gravity flows. J Atmos Sci 39: 2701–2711

    Article  Google Scholar 

  • Mahrt L (1999). Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90: 375–396

    Article  Google Scholar 

  • Mahrt L (2007). Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ Fluid Mech 7: 331–347

    Article  Google Scholar 

  • Mahrt L and Vickers D (2002). Contrasting vertical structures of nocturnal boundary layers. Boundary-Layer Meteorol 105: 351–383

    Article  Google Scholar 

  • Masson V, Champeaux JL, Chauvin F, Meriguet C and Lacaze R (2003). A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Climate 9: 1261–1282

    Google Scholar 

  • Morcrette JJ (1989) Description of the radiation scheme in the ECMWF model. ECMWF Tech Memo 165, Research Department ECMWF, Reading, United Kingdom

  • Noilhan J and Planton S (1989). A simple parameterization of land surface processes for meteorological models. Mon Wea Rev 177: 536–549

    Article  Google Scholar 

  • Peixoto J and Oort A (1992). Physics of climate. Springer-Verlag, New York, pp 520

    Google Scholar 

  • Pielke RA, Pearce RP (eds) (1994) Mesoscale modeling of the atmosphere. Meteor Monogr, No. 47, Amer Meteorol Soc

  • Poulos GS, Blumen W, Fritts D, Lundquist J, Sun J, Burns S, Nappo C, Banta R, Newsome R, Cuxart J, Terradellas E, Balsley B and Jensen M (2002). ‘CASES99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Amer Meteorol Soc 83: 555–581

    Article  Google Scholar 

  • Redelsperger JL and Sommeria G (1981). Mètode de reprèsentation de la turbulence d’echelle infèrieur a la maille pour un modèle tri-dimensionel de convection nuagese. Boundary-Layer Meteorol 21: 509–530

    Article  Google Scholar 

  • Renfrew IA (2004). The dynamics of idealized katabatic flow over a moderate slope and ice shelf. Quart J Roy Meteorol Soc 130: 1023–1045

    Article  Google Scholar 

  • San José R, Casanova JL, Viloria RE and Casanova J (1985). Evaluation of the turbulent parameters of the unstable boundary layer outside Businger’s range. Atmos Environ 19: 1555–1561

    Article  Google Scholar 

  • Soler MR, Bravo M and Ortega S (2007). The use of meteorological and dispersion models in stratified boundary layers. Dev Environ Sci 6: 199–208

    Google Scholar 

  • Soler MR, Infante C, Buenestado P and Mahrt L (2002). Observations of nocturnal drainage flows in a shallow gully. Boundary-Layer Meteorol 105: 253–273

    Article  Google Scholar 

  • Tarradellas E, Soler MR and Ferreres E (2005). Analysis of oscillations in the atmospheric stable boundary layer by wavelet methods. Boundary-Layer Meteorol 114: 489–518

    Article  Google Scholar 

  • Zhong S and Fast J (2003). An evaluation of the MM5, RAMS and Meso-Eta models at subkilometer resolution using VTMX field campaign in the Salt Lake Valley. Mon Wea Rev 131: 1301–1322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Soler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo, M., Mira, T., Soler, M.R. et al. Intercomparison and Evaluation of MM5 and Meso-NH mesoscale models in the stable boundary layer. Boundary-Layer Meteorol 128, 77–101 (2008). https://doi.org/10.1007/s10546-008-9269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-008-9269-y

Keywords

Navigation