Skip to main content
Log in

Long-term study of coherent structures in the atmospheric surface layer

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A long-term study of coherent turbulence structures in the atmospheric surface layer has been carried out using 10 months of turbulence data taken on a 30-m tower under varying meteorological conditions. We use an objective detection technique based on wavelet transforms. The applied technique permits the isolation of the coherent structures from small-scale background fluctuations which is necessary for the development of dynamical models describing the evolution and properties of these phenomena. It was observed that coherent structures occupied 36% of the total time with mean turbulent flux contributions of 44% for momentum and 48% for heat. The calculation of a transport efficiency parameter indicates that coherent structures transport heat more efficiently than momentum. Furthermore, the transport efficiency increases with increasing contribution of the structures to the overall transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo OC, Moraes OLL, Degrazia GA and Medeiros LE (2006). Intermittency and the exchange of scalars in the nocturnal surface layer. Boundary-Layer Meteorol 119: 41–55

    Article  Google Scholar 

  • Antonia RA and Chambers AJ (1978). Note on the temperature ramp structure in the marine surface layer. Boundary-Layer Meteorol 15: 3347–3355

    Google Scholar 

  • Antonia RA, Chambers AJ, Friehe CA and Van Atta CW (1979). Temperature ramps in the atmospheric surface layer. J Atmos Sci 36: 99–108

    Article  Google Scholar 

  • Bergström H and Högström U (1989). Turbulent exchange above a pine forest, II: organized structures. Boundary-Layer Meteorol 49: 231–263

    Article  Google Scholar 

  • Brunet Y and Irvine MR (2000). The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorol 94: 139–163

    Article  Google Scholar 

  • Campbell Scientific (2002) CSAT Three dimensional sonic anemometer – User guide, Issued 04.9.02. Campbell Park, Shepshed, Loughborough, UK, 38 pp

  • Caughey SJ and Readings CJ (1975). An observation of waves and turbulence in the earth’s boundary layer. Boundary-Layer Meteorol 9: 279–296

    Article  Google Scholar 

  • Caughey SJ, Wyngaard JC and Kaimal JC (1979). Turbulence in the evolving stable boundary layer. J Atmos Sci 36: 1041–1052

    Google Scholar 

  • Chen J and Hu F (2003). Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe river basin, China. Boundary-Layer Meteorol 107: 429–444

    Article  Google Scholar 

  • Chen W, Novak MD, Black TA and Lee X (1997). Coherent eddies and temperature structure functions for three contrasting surfaces. Part I: Ramp model with finite microfront time. Boundary-Layer Meteorol 84: 99–123

    Article  Google Scholar 

  • Collineau S and Brunet Y (1993a). Detection of turbulent coherent motions in a forest canopy, Part 1: wavelet analysis. Boundary-Layer Meteorol 65: 357–379

    Google Scholar 

  • Collineau S and Brunet Y (1993b). Detection of turbulent coherent motions in a forest canopy, Part 2: time-scales and conditional averages. Boundary-Layer Meteorol 66: 49–73

    Article  Google Scholar 

  • Drobinski P and Foster RC (2003). On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer. Boundary-Layer Meteorol 108: 247–256

    Article  Google Scholar 

  • Drobinski P, Brown RA, Flamant PH and Pelon J (1998). Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar. Boundary-Layer Meteorol 88: 343–361

    Article  Google Scholar 

  • Drobinski P, Carlotti P, Newsom RK, Banta RM, Foster RC and Redelsberger J-L (2004). The structure of the near-neutral atmospheric surface layer. J Atmos Sci 61: 699–714

    Article  Google Scholar 

  • Drobinski P, Carlotti P, Redelsberger J-L, Banta RM, Masson V and Newsom RK (2007). Numerical and experimental investigation of the neutral atmospheric surface layer. J Atmos Sci 64: 137–156

    Article  Google Scholar 

  • Drobinski P, Redelsberger J-L and Pietras C (2006). Evaluation of a planetary boundary layer subgrid-scale model that accounts for near-surface turbulence anisotropy. Geophys Res Lett 33: L23806. doi:10.1029/2006GL027062

    Article  Google Scholar 

  • Feigenwinter C and Vogt R (2005). Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81: 219–230

    Article  Google Scholar 

  • Fesquet C, Barthlott C, Drobinski P, Dubos T, Pietras C, Haeffelin M (2006) Impact of terrain heterogeneity on near-surface turbulence: long-term investigation at SIRTA observatory. In: 17th Symposium on Boundary Layers and Turbulence/27th Conference on Agricultural and Forest Meteorology, AMS paper no. J6.6, San Diego, USA

  • Foster RC and Brown RA (1994). On large-scale PBL modelling: surface layer models. Global Atmos Ocean Syst 2: 185–198

    Google Scholar 

  • Foster RC, Vianey F, Drobinski P and Carlotti P (2006). Near-surface coherent structures and the vertical momentum flux in a large-eddy simulation of the neutrally-stratified boundary layer. Boundary-Layer Meteorol 120: 229–255

    Article  Google Scholar 

  • Gao W and Li BL (1993). Wavelet analysis of coherent structures at the atmosphere-forest interface. J Appl Meteorol 32: 1717–1725

    Article  Google Scholar 

  • Gao W, Shaw RH and Paw U KT (1989). Observation of organized structure in turblent flow within and above a forest canopy. Boundary-Layer Meteorol 47: 349–377

    Article  Google Scholar 

  • Gao W, Shaw RH and Paw U KT (1992). Conditional analysis of temperature and humidity microfronts and ejection/sweep motions within and above a deciduous forest. Boundary-Layer Meteorol 59: 35–57

    Article  Google Scholar 

  • Haeffelin M, Barthès L, Bock O, Boitel C, Bony S, Bouniol D, Chepfer H, Chiriaco M, Delanoë J, Drobinski P, Dufresne JL, Flamant C, Grall M, Hodzic A, Hourdin F, Lapouge F, Lemaître Y, Mathieu A, Morille Y, Naud C, Noël V, Pelon J, Pietras C, Protat A, Romand B, Scialom G and Vautard R (2005). SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann Geophys 23: 253–275

    Article  Google Scholar 

  • Hagelberg CR and Gamage NKK (1994). Structure-preserving wavelet decompositions of intermittent turbulence. Boundary-Layer Meteorol. 70: 217–246

    Article  Google Scholar 

  • Howell JF and Mahrt L (1994). An adaptive decomposition: application to turbulence. In: Foufoula-Georgiou, E and Kumar, P (eds) Wavelets in geophysics, pp 107–128. Academic Press, San Diego

    Google Scholar 

  • Kaimal JC and Finnigan JJ (1994). Atmospheric boundary layer flows – their structure and measurement. Oxford University Press, Oxford, 289 pp

    Google Scholar 

  • Kanda M and Hino M (1993). Organized structures in developing turbulent flow within and above a plant canopy, using a large eddy simulation. Boundary-Layer Meteorol 68: 237–257

    Article  Google Scholar 

  • Katul G, Kuhn G, Schieldge J and Hsieh C (1997). The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol 83: 1–26

    Article  Google Scholar 

  • Krusche N and De Oliveira AP (2004). Characterization of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 110: 191–211

    Article  Google Scholar 

  • Lee X, Neumann HH, Den Hartog G, Fuentes JD, Black TA, Mickle RE, Yang PC and Blanken PD (1997). Observation of gravity waves in a boreal forest. Boundary-Layer Meteorol 84: 383–398

    Article  Google Scholar 

  • Lu C-H and Fitzjarrald DR (1994). Seasonal and diurnal variations of coherent structures over a deciduous forest. Boundary-Layer Meteorol 69: 43–69

    Article  Google Scholar 

  • McNaughton KG and Brunet Y (2002). Townsend’s hypothesis, coherent structures and Monin-Obukhov similarity. Boundary-Layer Meteorol 102: 161–175

    Article  Google Scholar 

  • Nieuwstadt FTM (1984). The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41: 2202–2216

    Article  Google Scholar 

  • Paw U KT, Brunet Y, Collineau S, Shaw RH, Maitani T, Qiu J and Hipps L (1992). On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol 61: 55–68

    Article  Google Scholar 

  • Poulos GS and Burns SP (2003). An evaluation of bulk Ri-based surface flux formulas for stable and very stable conditions with intermittent turbulence. J Atmos Sci 60: 2523–2537

    Article  Google Scholar 

  • Qiu J, PawU KT and Shaw RH (1995). Pseudo-wavelet analysis of turbulence patterns in three vegetation layers. Boundary-Layer Meteorol 72: 177–204

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ and Brunet Y (1996). Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78: 351–382

    Article  Google Scholar 

  • Raupach MR, Thom AS and Edwards I (1980). A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary-Layer Meteorol 18: 373–397

    Article  Google Scholar 

  • Robinson SK (1991). Coherent motions in the turbulent boundary layer. Ann Rev Fluid Mech 23: 601–639

    Article  Google Scholar 

  • Sadani LK and Kulkarni JR (2001). A study of coherent structures in the atmospheric surface layer over short and tall grass. Boundary-Layer Meteorol 99: 317–334

    Article  Google Scholar 

  • Schols JLJ (1984). The detection and measurement of turbulent structures in the atmospheric surface layer. Boundary-Layer Meteorol 29: 39–58

    Article  Google Scholar 

  • Stull R (1988). An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht,, 666 pp

    Google Scholar 

  • Su H-B, Shaw RH, Paw U KT, Moeng C-H and Sullivan PS (1998). Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol 88: 363–397

    Article  Google Scholar 

  • Thomas C, Foken T (2006) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Boundary-Layer Meteorol. doi:10.1007/s10546-006-9087-z

  • Torrence C and Compo GP (1998). A practical guide to wavelet analysis. Bull Amer Meteor Soc 79: 61–78

    Article  Google Scholar 

  • Turner BJ, Leclerc MY, Gauthier M, Moore KE and Fitzjarrald DR (1994). Identification of turbulence structures above a forest canopy using a wavelet transform. J Geophys Res 99: 1919–1926

    Article  Google Scholar 

  • Wallace JM, Eckelmann H and Brodkey RS (1972). The wall region in turbulent shear flow. J Fluid Mech 54: 39–48

    Article  Google Scholar 

  • Wilczak JM (1984). Large-scale eddies in the unstably stratified atmospheric surface layer Part I: velocity and temperature structure. J Atmos Sci 41: 3537–3550

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Barthlott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthlott, C., Drobinski, P., Fesquet, C. et al. Long-term study of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 125, 1–24 (2007). https://doi.org/10.1007/s10546-007-9190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-007-9190-9

Keywords

Navigation