Skip to main content
Log in

A microscale three-dimensional urban energy balance model for studying surface temperatures

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cair,H:

average heat capacity per unit plan area of air below z H , J m−2 K−1

C :

volumetric heat capacities, J m−3 K−1

ea :

water vapour pressure at z ref, hPa

G :

conductive heat flux density, W m−2

H/W:

mean building-height-to-street-width ratio of canyon or regular cube array

H/W3D:

mean wall-to-street area ratio of regular cube arrays

H can :

summed canopy patch convective sensible heat fluxes per canopy plan area, W m−2

h :

convective heat transfer coefficient (patch), W m−2 K−1

H :

convective sensible heat flux density (patch), W m−2

h top :

convective heat transfer coefficient between canopy air and boundary layer, W m−2 K−1

H top :

convective sensible heat flux density between canopy air and boundary layer, W m−2

i, j:

patch index/number

k :

thermal conductivity, W m−1 K−1

K↑:

upward shortwave radiative flux density, W m−2

Kdif:

incident diffuse shortwave flux density, W m−2

Kdir:

incident direct shortwave flux density, W m−2

K i :

incident shortwave radiative flux density at patch i after multiple reflections, W m−2

K i :

reflected shortwave radiative flux density at patch i after multiple reflections, W m−2

L h :

forcing height for patch convection, m

l p :

length of a patch side, m

L R :

average roof length, m

L↑:

upward longwave radiative flux density, W m−2

L↓:

downward longwave flux density from the sky, W m−2

L i :

incident longwave flux density at patch i after multiple reflections, W m−2

m :

timestep index

n :

total number of patches

p :

number of layers in a patch (conduction)

P a :

atmospheric pressure at z ref, hPa

Q*:

net radiation flux density, W m−2

Q h :

convective sensible heat flux density (volume), W m−2

q :

reflection number

R q :

reflected radiative flux density (solar or longwave) at reflection q, W m−2

r w :

wall roughness coefficient

S d :

refers to the sub-domain

T(z):

air temperature at height z, K

T a :

air temperature at z ref, K

T app :

apparent surface temperature, K

T b (b = 1,...,p):

substrate layer temperatures, K

T can :

canopy air temperature (zz H ), K

T D :

deep-soil temperature, K

T INT :

building internal temperature, K

Tlog(z):

air temperature profile above z H , K

T R :

mean roof surface temperature, K

T r :

mean road surface temperature, K

T sfc :

surface temperature, K

T W :

mean wall surface temperature, K

U(z):

wind speed at height z, m s−1

U a :

wind speed at z ref, m s−1

Ueff(z):

effective wind speed at height z, m s−1

x, y, z:

location in space

x L :

building width, m

x W :

canyon (street) width, m

z 0h :

roughness length for heat, m

z 0m :

roughness length for momentum (patch), m

z 0town :

roughness length for momentum (domain), m

z d :

displacement height, m

z H :

mean building height, m

z horz :

height of patch forcing U(z) and T(z) above street level, m

z ref :

reference height for forcing data, m

α :

shortwave albedo

α r :

shortwave albedo of streets

α R :

shortwave albedo of roofs

α W :

shortwave albedo of walls

δ:

solar azimuth angle, °

Δα D :

sub-domain albedo change threshold

ΔQ s :

storage heat flux density (volume), W m−2

Δt :

timestep size, s

ΔT crit :

surface temperature change threshold, K

Δx :

layer thickness, m

\({\varepsilon }\) :

longwave emissivity

\({\varepsilon_{r}}\) :

longwave emissivity of streets

\({\varepsilon_{r}}\) :

longwave emissivity of roofs

\({\varepsilon_{W}}\) :

longwave emissivity of walls

\({\phi}\) :

solar zenith angle, °

γ:

degree of implicitness (conduction)

\({\eta}\) :

domain rotation from north (clockwise), °

λ c :

complete-to-plan area ratio

λ f :

frontal-area-to-plan area ratio

λ p :

building-to-plan area ratio

λ pH :

building-to-plan area ratio at z H

σ:

Stefan–Boltzmann constant, W m−2 K−1

\({\varOmega_{\rm INT}}\) :

building internal resistance, W m−1 K−1

\({\psi_{i,{\rm external}}}\) :

view factor from a patch i to external surfaces

\({\psi_{i,j}}\) :

view factor from a patch i to a patch j

\({\psi_{i,{\rm sky}}}\) :

view factor from a patch i to the sky

References

  • Aida M (1982) Urban albedo as a function of the urban structure—a model experiment. Boundary-Layer Meteorol 23:405–413

    Article  Google Scholar 

  • Arnfield AJ (1988) Validation of an estimation model for urban surface albedo. Phys Geog 9:361–372

    Google Scholar 

  • Arnfield AJ (1990) Canyon geometry, the urban fabric and nocturnal cooling: a simulation approach. Phys Geog 11:220–239

    Google Scholar 

  • Arnfield AJ, Grimmond CSB (1998) An urban canyon energy budget model and its application to urban storage heat flux modeling. Energy Buildings 27:61–68

    Article  Google Scholar 

  • Arnfield AJ, Mills GM (1994) An analysis of the circulation characteristics and energy budget of a dry, asymmetric, east–west urban canyon II: energy budget. Int J Climatol 14:239–261

    Article  Google Scholar 

  • Ashdown I (1994) Radiosity: a programmer’s perspective. John Wiley & Sons, New York, 496 pp

    Google Scholar 

  • Ashie Y, Ca VT, Asaeda T (1999) Building canopy model for the analysis of urban climate. J Wind Eng and Ind Aerodyn 81:237–248

    Article  Google Scholar 

  • ASHRAE (1981) American society of heating, refrigerating and air conditioning engineers handbook 1982 applications. ASHRAE, Atlanta GA

  • Bruse M, Fleer H (1998) Simulating surface–plant–air interactions inside urban environments with a three-dimensional numerical model. Environ Model Software 13:373–384

    Article  Google Scholar 

  • Carlson TN, Dodd JK, Benjamin SG, Cooper JN (1981) Satellite estimation of the surface energy balance, moisture availability and thermal inertia. J Appl Meteorol 20:67–87

    Article  Google Scholar 

  • Christen A, Vogt R (2004) Energy and radiation balance of a central european city. Int J Climatol 24:1395–1421

    Article  Google Scholar 

  • Cionco RM (1965) A mathematical model for air flow in a vegetative canopy. J Appl Meteorol 4:517–522

    Article  Google Scholar 

  • Clarke JA (1985) Energy simulation in building design. Adam Hilger, Bristol, 400 pp

    Google Scholar 

  • Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Quart J Roy Meteorol Soc 130:1349–1372

    Article  Google Scholar 

  • Cole RJ, Sturrock NS (1977) The convective heat exchange at the external surface of buildings. Building Environ 12:207–214

    Article  Google Scholar 

  • Groleau D, Fragnaud F, Rosant JM (2003) Simulation of the radiative behavior of an urban quarter of marseille with the SOLENE model. In: preprint, Fifth International Conference on Urban Climate, Lodz, Poland, Sept 1–5, 2003, International Association for Urban Climate, pp 335–338

  • Harman IN, Barlow JF, Belcher SE (2004) Scalar fluxes from urban street canyons. Part II: model. Boundary-Layer Meteorol 113:387–409

    Google Scholar 

  • Hottel HC, Sarofim AF (1967) Radiation heat transfer. McGraw-Hill, New York, 520 pp

    Google Scholar 

  • Iqbal M (1983) An introduction to solar radiation. Academic Press, Toronto, 390 pp

    Google Scholar 

  • Jacobson MZ (1999) Fundamentals of atmospheric modeling. Cambridge University Press, 656 pp

  • Johnson GT, Oke TR, Lyons TJ, Steyn DG, Watson ID, Voogt JA (1991) Simulation of surface urban heat islands under ‘ideal’ conditions at night part 1: theory and tests against field data. Boundary-Layer Meteorol 56:275–294

    Article  Google Scholar 

  • Kanda M, Kawai T, Kanega M, Moriwaki R, Narita K, Hagishima A (2005a) A simple energy balance model for regular building arrays. Boundary-Layer Meteorol 116:423–443

    Article  Google Scholar 

  • Kanda M, Kawai T, Nakagawa K (2005b) A simple theoretical radiation scheme for regular building arrays. Boundary-Layer Meteorol 114:71–90

    Article  Google Scholar 

  • Kawai T, Kanda M (2003) Three dimensional radiation model for urban canopy. Ann J Hydro Eng 47:55–60(in Japanese)

    Google Scholar 

  • Kondo H, Kikegawa Y (2003) Temperature variation in the urban canopy with anthropogenic energy use. Pure Appl Geophys 160:317–324

    Article  Google Scholar 

  • Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Boundary-Layer Meteorol 101:329–358

    Article  Google Scholar 

  • Lemonsu A, Grimmond CSB, Masson V (2004) Modeling the surface energy balance of the core of an old mediterranean city: marseille. J Appl Meteorol 43:312–327

    Article  Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17:187–202

    Article  Google Scholar 

  • Macdonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97:25–45

    Article  Google Scholar 

  • Macdonald RW, Griffiths RF, Hall DJ (1998) An improved method for estimation of surface roughness of obstacle arrays. Atmos Environ 32:1857–1864

    Article  Google Scholar 

  • Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorol 104:261–304

    Article  Google Scholar 

  • Mascart P, Noilhan J, Giordani H (1995) A modified parameterization of flux–profile relationships in the surface layer using different roughness length values for heat and momentum. Boundary-Layer Meteorol 72:331–344

    Article  Google Scholar 

  • Masson V (2000) A physically based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorol 94:357–397

    Article  Google Scholar 

  • Masson V, Grimmond CSB, Oke TR (2002) Evaluation of the town energy balance (TEB) scheme with direct measurements from dry districts in two cities. J Appl Meteorol 41:1011–1026

    Google Scholar 

  • Mills G (1993) Simulation of the energy budget of an urban canyon—I. Model structure and sensitivity test. Atmos Environ 27B:157–170

    Google Scholar 

  • Mills G (1997a) An urban canopy-layer climate model. Theor Appl Climatol 57:229–244

    Article  Google Scholar 

  • Mills G (1997b) The radiative effects of building groups on single structures. Energy Buildings 25: 51–61

    Article  Google Scholar 

  • Nakamura Y, Oke TR (1988) Wind, temperature and stability conditions in an east–west oriented urban canyon. Atmos Environ 12:2691–2700

    Google Scholar 

  • Nunez M, Oke TR (1977) The energy balance of an urban canyon. J Appl Meteorol 16:11–19

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates. Routledge, London, 435 pp

    Google Scholar 

  • Oke TR (1988) The urban energy balance. Prog Phys Geogr 12:471–508

    Google Scholar 

  • Prata AJ (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart J Roy Meteorol Soc 122:1127–1151

    Article  Google Scholar 

  • Raupach MR (1992) Drag and drag partition on rough surfaces. Boundary-Layer Meteorol 60:375–395

    Article  Google Scholar 

  • Rotach MW (1993) Turbulence close to a rough urban surface part I: Reynolds stress. Boundary-Layer Meteorol 65:1–28

    Article  Google Scholar 

  • Rotach MW (1995) Profiles of turbulence statistics in and above an urban street canyon. Atmos Environ 29:1473–1486

    Article  Google Scholar 

  • Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning S-E, Martucci G, Mayer H, Mitev V, Parlow E, Richner H, Roth M, Roulet Y-A, Ruffieux D, Salmond JA, Shatzmann M, Voogt JA (2005) BUBBLE—an urban boundary layer meteorology project. Theor Appl Climatol 81:231–261

    Article  Google Scholar 

  • Rowley FB, Algren AB, Blackshaw JL (1930a) Effects of air velocity on surface coefficients. Trans ASHRAE 36:123–136

    Google Scholar 

  • Rowley FB, Algren AB, Blackshaw JL (1930b) Surface conductances as affected by air velocity, temperature, and character of surface. Trans ASHRAE 36:429–446

    Google Scholar 

  • Rowley FB, Eckley WA (1932) Surface coefficients as affected by wind direction. Trans ASHRAE 38:33–46

    Google Scholar 

  • Siegel R, Howell JR (2001) Thermal radiation heat transfer, 4th edn. Taylor and Francis-Hemisphere, Washington, 868 pp

    Google Scholar 

  • Sievers U, Zdunkowski W (1985) A numerical simulation scheme for the albedo of city street canyons. Boundary-Layer Meteorol 33:245–257

    Article  Google Scholar 

  • Soux A, Voogt JA, Oke TR (2004) A model to calculate what a remote sensor ‘sees’ of an urban surface. Boundary-Layer Meteorol 112:109–132

    Article  Google Scholar 

  • Stull RB (2000) Meteorology for scientists and engineers, 2nd edn. Brooks/Cole, Pacific Grove, USA, 502 pp

  • Terjung WH, Louie SS-F (1974) A climatic model of urban energy budgets. Geogr Anal 6:341–367

    Article  Google Scholar 

  • Voogt JA, Grimmond CSB (2000) Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J Appl Meteorol 39:1679–1699

    Article  Google Scholar 

  • Voogt JA, Oke TR (1997) Complete urban surface temperatures. J Appl Meteorol 36:1117–1132

    Article  Google Scholar 

  • Voogt JA, Oke TR (1998) Effects of urban surface geometry on remotely sensed surface temperature. Int J Remote Sens 19:895–920

    Article  Google Scholar 

  • Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res C 90:8995–9005

    Article  Google Scholar 

  • Wu L (1995) An urban canopy layer surface energy balance climate model. Ph.D. Dissertation, University of California, Los Angeles

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Scott Krayenhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krayenhoff, E.S., Voogt, J.A. A microscale three-dimensional urban energy balance model for studying surface temperatures. Boundary-Layer Meteorol 123, 433–461 (2007). https://doi.org/10.1007/s10546-006-9153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-006-9153-6

Keywords

Navigation