Skip to main content
Log in

Integrated microbioreactor for culture and analysis of bacteria, algae and yeast

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We introduce a micro-scale bioreactor for automated culture and density analysis of microorganisms. The microbioreactor is powered by digital microfluidics (DMF) and because it is used with bacteria, algae and yeast, we call it the BAY microbioreactor. Previous miniaturized bioreactors have relied on microchannels which often require valves, mixers and complex optical systems. In contrast, the BAY microbioreactor is capable of culturing microorganisms in distinct droplets on a format compatible with conventional bench-top analyzers without the use of valves, mixers or pumps. Bacteria, algae and yeast were grown for up to 5 days with automated semi-continuous mixing and temperature control. Cell densities were determined by measuring absorbances through transparent regions of the devices, and growth profiles were shown to be comparable to those generated in conventional, macro-scale systems. Cell growth and density measurements were integrated in the microbioreactor with a fluorescent viability assay and transformation of bacteria with a fluorescent reporter gene. These results suggest that DMF may be a useful new tool in automated culture and analysis of microorganisms for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

Similar content being viewed by others

References

  • M. Abdelgawad, M.W. Watson, A.R. Wheeler, Lab Chip 9, 1046 (2009)

    Article  Google Scholar 

  • M. Abdelgawad, A.R. Wheeler, Adv. Mat 21, 920 (2009)

    Article  Google Scholar 

  • M. Abdelgawad, S.L. Freire, H. Yang, A.R. Wheeler, Lab Chip 8, 672 (2008)

    Article  Google Scholar 

  • S.N. Bailey, R.Z. Wu, D.M. Sabatini, Drug Discov Today 7, S113 (2002)

    Article  Google Scholar 

  • S.N. Bailey, D.M. Sabatini, B.R. Stockwell, Proc Natl Acad Sci USA 101, 16144 (2004)

    Article  Google Scholar 

  • F.K. Balagadde, L. You, C.L. Hansen, F.H. Arnold, S.R. Quake, Science 309, 137 (2005)

    Article  Google Scholar 

  • I. Barbulovic-Nad, S.H. Au, A.R. Wheeler, Lab Chip 10, 1536 (2010)

    Article  Google Scholar 

  • I. Barbulovic-Nad, H. Yang, P.S. Park, A.R. Wheeler, Lab Chip 8, 519 (2008)

    Article  Google Scholar 

  • G.P.L. Cereghino, J.M. Cregg, Curr Opin Biotechnol 10, 422 (1999)

    Article  Google Scholar 

  • Y.H. Chang, G.B. Lee, F.C. Huang, Y.Y. Chen, J.L. Lin, Biomed Microdevices 8, 215 (2006)

    Article  Google Scholar 

  • D. Chatterjee, A.J. Ytterberg, S.U. Son, J.A. Loo, R.L. Garrell, Anal Chem 82, 2095 (2010)

    Article  Google Scholar 

  • Y. Chisti, Trends Biotechnol 26, 126 (2008)

    Article  Google Scholar 

  • A.L. Demain, J.L. Adrio, Mol Biotechnol 38, 41 (2008)

    Article  Google Scholar 

  • S. Faley, K. Seale, J. Hughey, D. K. Schaffer, S. VanCompernolle, B. McKinney, F. Baudenbacher, D. Unutmaz, J. P. Wikswo, Lab Chip. 8, 1700 (2008)

  • S. L. Faley, M. Copland, D. Wlodkowic, W. Kolch, K. T. Seale, J. P. Wikswo, J. M. Cooper, Lab Chip. 9, 2659 (2009)

  • G.B. Fogel, C.F. Brunk, Anal Biochem 260, 80 (1998)

    Article  Google Scholar 

  • J. Fowler, M. Hyejin, K. Chang-Jin, in Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference on, p. 97–100 (2002)

  • G. Giaever, A.M. Chu, L. Ni, C. Connelly, L. Riles, S. Veronneau, S. Dow, A. Lucau-Danila, K. Anderson, B. Andre, A.P. Arkin, A. Astromoff, M. El Bakkoury, R. Bangham, R. Benito, S. Brachat, S. Campanaro, M. Curtiss, K. Davis, A. Deutschbauer, K.-D. Entian, P. Flaherty, F. Foury, D.J. Garfinkel, M. Gerstein, D. Gotte, U. Guldener, J.H. Hegemann, S. Hempel, Z. Herman, D.F. Jaramillo, D.E. Kelly, S.L. Kelly, P. Kotter, D. LaBonte, D.C. Lamb, N. Lan, H. Liang, H. Liao, L. Liu, C. Luo, M. Lussier, R. Mao, P. Menard, S.L. Ooi, J.L. Revuelta, C.J. Roberts, M. Rose, P. Ross-Macdonald, B. Scherens, G. Schimmack, B. Shafer, D.D. Shoemaker, S. Sookhai-Mahadeo, R.K. Storms, J.N. Strathern, G. Valle, M. Voet, G. Volckaert, C-y Wang, T.R. Ward, J. Wilhelmy, E.A. Winzeler, Y. Yang, G. Yen, E. Youngman, K. Yu, H. Bussey, J.D. Boeke, M. Snyder, P. Philippsen, R.W. Davis, M. Johnston, Nature 418, 387 (2002)

    Article  Google Scholar 

  • A. Groisman, C. Lobo, H. Cho, J.K. Campbell, Y.S. Dufour, A.M. Stevens, A. Levchenko, Nat Methods 2, 685 (2005)

    Article  Google Scholar 

  • A. Humphrey, Biotechnol Prog 14, 3 (2008)

    Article  Google Scholar 

  • M.J. Jebrail, A.R. Wheeler, Anal Chem 81, 330 (2009)

    Article  Google Scholar 

  • M. J. Jebrail, V. N. Luk, S. C. C. Shih, R. Fobel, A. H. Ng, H. Yang, S. L. Freire, A. R. Wheeler, J Vis Exp. (2009). doi:10.3791/1603

  • J.S. Kee, D.P. Poenar, P. Neuzil, L. Yobas, Sens and Act. B 134, 532 (2008)

    Article  Google Scholar 

  • E.V. Koonin, M.Y. Galperin, Curr Opin Genet Dev 7, 757 (1997)

    Article  Google Scholar 

  • B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, Anal Chem 76, 1571 (2004)

    Article  Google Scholar 

  • H.L. Lee, P. Boccazzi, R.J. Ram, A.J. Sinskey, Lab Chip 6, 1229 (2006)

    Article  Google Scholar 

  • Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D.J. Harrison, Anal Chem 68, 1040 (1996)

    Article  Google Scholar 

  • A. Llobera, S. Demming, R. Wilke, S. Buttgenbach, Lab Chip 7, 1560 (2007)

    Article  Google Scholar 

  • H.W. Lu, F. Bottausci, J.D. Fowler, A.L. Bertozzi, C. Meinhart, C.J. Kim, Lab Chip 8, 456 (2008)

    Article  Google Scholar 

  • V.N. Luk, G. Mo, A.R. Wheeler, Langmuir 24, 6382 (2008)

    Article  Google Scholar 

  • V.N. Luk, A.R. Wheeler, Anal Chem 81, 4524 (2009)

    Article  Google Scholar 

  • M. Mandel, A. Higa, J Mol Biol 53, 159 (1970)

    Article  Google Scholar 

  • E.M. Miller, A.R. Wheeler, Anal Chem 80, 1614 (2008)

    Article  Google Scholar 

  • D.J.S. Montagnes, D.J. Franklin, Limnol. Oceangr. 46, 2008 (2001)

    Article  Google Scholar 

  • H. Moon, A.R. Wheeler, R.L. Garrell, J.A. Loo, C.J. Kim, Lab Chip 6, 1213 (2006)

    Article  Google Scholar 

  • N. A. Mousa, M. J. Jebrail, H. Yang, M. Abdelgawad, P. Metalnikov, J. Chen, A. R. Wheeler, R. F. Casper, Sci Transl Med. 1, 1ra2 (2009)

  • P. Paik, V.K. Pamula, R.B. Fair, Lab Chip 3, 253 (2003a)

    Article  Google Scholar 

  • P. Paik, V.K. Pamula, M.G. Pollack, R.B. Fair, Lab Chip 3, 28 (2003b)

    Article  Google Scholar 

  • X.Y. Peng, P.C.H. Li, Anal Chem 76, 5282 (2004)

    Article  Google Scholar 

  • J. Piškur, R.B. Langkjær, Mol Microbiol 53, 381 (2004)

    Article  Google Scholar 

  • D.A. Ratkowsky, J. Olley, T.A. McMeekin, A. Ball, J Bacteriol 149, 1 (1982)

    Google Scholar 

  • J. Ryley, O.M. Pereira-Smith, Yeast 23, 1065 (2006)

    Article  Google Scholar 

  • G.J. Shah, A.T. Ohta, E.P. Chiou, M.C. Wu, C.J. Kim, Lab Chip 9, 1732 (2009)

    Article  Google Scholar 

  • R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Lab Chip 8, 2091 (2008a)

    Article  Google Scholar 

  • R.S. Sista, A.E. Eckhardt, V. Srinivasan, M.G. Pollack, S. Palanki, V.K. Pamula, Lab Chip 8, 2188 (2008b)

    Article  Google Scholar 

  • S. Son, R. Garrell, Lab Chip 9, 2398 (2009)

    Article  Google Scholar 

  • V. Srinivasan, V.K. Pamula, R.B. Fair, Anal Chim Acta 507, 145 (2004a)

    Article  Google Scholar 

  • V. Srinivasan, V.K. Pamula, R.B. Fair, Lab Chip 4, 310 (2004b)

    Article  Google Scholar 

  • J.R. Swartz, Curr Opin Biotechnol 12, 195 (2001)

    Article  Google Scholar 

  • M.D. Vahey, J. Voldman, Anal Chem 80, 3135 (2008)

    Article  Google Scholar 

  • E. Verpoorte, A. Manz, H. Ludi, A.E. Bruno, F. Maystre, B. Krattiger, H.M. Widmer, B.H. van der Schoot, N.F. de Roojj, Sens and Act B. 6, 66 (1992)

    Article  Google Scholar 

  • I. Walther, B.v d Schootb, M. Boillatb, A. Cogoli, Enzyme Microb Technol 27, 778 (2000)

    Article  Google Scholar 

  • M.W. Watson, M.J. Jebrail, A.R. Wheeler, Anal Chem 82, 6680 (2010)

    Article  Google Scholar 

  • A.R. Wheeler, H. Moon, C.A. Bird, R.R.O. Loo, C.J. Kim, J.A. Loo, R.L. Garrell, Anal Chem 77, 534 (2005)

    Article  Google Scholar 

  • A.R. Wheeler, Science 322, 539 (2008)

    Article  Google Scholar 

  • E. Yu, F. Zendejas, P. Lane, S. Gaucher, B. Simmons, T. Lane, Jour App. Phycol. (2009). doi: 10.1007/s10811-008-9400-y

  • Z. Zhang, P. Boccazzi, H.G. Choi, G. Perozziello, A.J. Sinskey, K.F. Jensen, Lab Chip 6, 906 (2006)

    Article  Google Scholar 

  • J. Ziauddin, D.M. Sabatini, Nature 411, 107 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Kevin Truong (Institute of Biomaterials and Biomedical Engineering, IBBME, University of Toronto) for generously donating E. coli and plasmid DNA, Prof. Igor Stagjlar (Department of Medical Genetics and Microbiology, University of Toronto) for generously donating S. cerevisiae and Prof. William Ryu (Department of Physics, University of Toronto) for the use of the cold room. We also thank Evan Mills (IBBME, University of Toronto) and Dawn Edmonds (Department of Medical Genetics and Microbiology, University of Toronto) for their assistance with bacterial transformation and yeast culture. We thank Kamlesh D. Patel and Pam Lane (Sandia National Laboratories, Livermore, CA) for discussion and assistance with algae culture. We thank the Canadian Institutes of Health Research (CIHR) for financial support. SHA and SCCS thank NSERC (Natural Sciences and Engineering Research Council) for graduate fellowships, and ARW thanks CRC for a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron R. Wheeler.

Additional information

Sam H. Au and Steve C. C. Shih contributed equally

Rights and permissions

Reprints and permissions

About this article

Cite this article

Au, S.H., Shih, S.C.C. & Wheeler, A.R. Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomed Microdevices 13, 41–50 (2011). https://doi.org/10.1007/s10544-010-9469-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9469-3

Keywords

Navigation