Skip to main content
Log in

Synthetic microvascular networks for quantitative analysis of particle adhesion

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

An Erratum to this article was published on 05 November 2013

Abstract

We have developed a methodology to study particle adhesion in the microvascular environment using microfluidic, image-derived microvascular networks on a chip accompanied by Computational Fluid Dynamics (CFD) analysis of fluid flow and particle adhesion. Microfluidic networks, obtained from digitization of in vivo microvascular topology were prototyped using soft-lithography techniques to obtain semicircular cross sectional microvascular networks in polydimethylsiloxane (PDMS). Dye perfusion studies indicated the presence of well-perfused as well as stagnant regions in a given network. Furthermore, microparticle adhesion to antibody coated networks was found to be spatially non-uniform as well. These findings were broadly corroborated in the CFD analyses. Detailed information on shear rates and particle fluxes in the entire network, obtained from the CFD models, were used to show global adhesion trends to be qualitatively consistent with current knowledge obtained using flow chambers. However, in comparison with a flow chamber, this method represents and incorporates elements of size and complex morphology of the microvasculature. Particle adhesion was found to be significantly localized near the bifurcations in comparison with the straight sections over the entire network, an effect not observable with flow chambers. In addition, the microvascular network chips are resource effective by providing data on particle adhesion over physiologically relevant shear range from even a single experiment. The microfluidic microvascular networks developed in this study can be readily used to gain fundamental insights into the processes leading to particle adhesion in the microvasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • J.R. Anderson, D.T. Chiu, R.J. Jackman, O. Cherniavskaya, J.C. McDonald, H. Wu, S.H. Whitesides, G.M. Whitesides, Anal. Chem. 72, 3158–3164 (2000)

    Article  Google Scholar 

  • G. Bendas, A. Krause, U. Bakowsky, J.J. Vogel, U. Rothe, Int. J. Pharm. 181, 79–93 (1999)

    Article  Google Scholar 

  • J.E. Blackwell, N.M. Dagia, J.B. Dickerson, E.L. Berg, D.J. Goetz, Ann. Biomed. Eng. 29, 523–33 (2001)

    Article  Google Scholar 

  • P.G.M. Bloemen, P.A.J. Henricks, L. Van Bloois, M.C. Van den Tweel, A.C. Bloem, F.P. Nijkamp, D.J.A. Crommelin, G. Storm, FEBS Lett. 357, 140–144 (1995)

    Article  Google Scholar 

  • D.C. Brown, R.S. Larson, BMC Immunol. 2, 9 (2001)

    Article  Google Scholar 

  • E.E. Burch, V.R. Shinde Patil, R.T. Camphausen, M.F. Kiani, D.J. Goetz, Blood. 100, 531–538 (2002)

    Article  Google Scholar 

  • T.M. Carlos, J.M. Harlan, Blood 84, 2068–2101 (1994)

    Google Scholar 

  • G.R. Cokelet, R. Soave, G. Pugh, L. Rathbun, Microvasc. Res. 46, 394–400 (1993)

    Article  Google Scholar 

  • R.S. Cotran, T. Mayadas-Norton, Pathol. Biol. (Paris) 46, 164–70 (1998)

    Google Scholar 

  • C. Cozens-Roberts, J.A. Quinn, D.A. Lauffenberger, Biophys. J. 58, 107–25 (1990)

    Article  Google Scholar 

  • K.L. Crutchfield, V.R. Shinde Patil, C.J. Campbell, C.A. Parkos, J.R. Allport, D.J. Goetz, J. Leukoc. Biol. 67, 196–205 (2000)

    Google Scholar 

  • D. Daly, R.F. Stevens, M.C. Hutley, N. Davies, Meas. Sci. Technol. 1, 759–766 (1990)

    Article  Google Scholar 

  • J.B. Dickerson, J.E. Blackwell, J.J. Ou, V.R. Shinde Patil, D.J. Goetz, Biotechnol. Bioeng. 73, 500–509 (2001)

    Article  Google Scholar 

  • J. El-Ali, P.K. Sorger, K.F. Jensen, Nature. 442, 403–11 (2006)

    Article  Google Scholar 

  • M. El-Sayed, M.F. Kiani, M.D. Naimark, A.H. Hikal, H. Ghandehari, Pharm. Res. 18, 23–8 (2001)

    Article  Google Scholar 

  • M.D.S. Frame, I.H. Sarelius, Microcirculation. 2, 377–385 (1995)

    Article  Google Scholar 

  • P. Gaehtgens, Int. J. Microcirc. Clin. Exp. 11, 123–132 (1992)

    Google Scholar 

  • M.E. Gerritsen, Biochem. Pharmacol. 36, 2701–2711 (1987)

    Article  Google Scholar 

  • D.J. Goetz, M.E. el-Sabban, B.U. Pauli, D.A. Hammer, Biophys. J. 66, 2202–2209 (1994)

    Article  Google Scholar 

  • D.J. Goetz, D.M. Greif, H. Ding, R.T. Camphausen, S. Howes, K.M. Comess, K.R. Snapp, G.S. Kansas, F.W. Luscinskas, J. Cell Biol. 137, 509–19 (1997)

    Article  Google Scholar 

  • H.L. Goldsmith, V.T. Turitto, Thromb. Haemost. 55, 415–35 (1986)

    Google Scholar 

  • A. Hajitou, R. Pasqualini, W. Arap, Trends Cardiovasc. Med. 16, 80–88 (2006)

    Article  Google Scholar 

  • D.A. Hammer, D.A. Lauffenburger, Biophys. J. 52, 475–87 (1987)

    Article  Google Scholar 

  • Y. Jiang, A.J. Przekwas, AIAA-94-0303 (1994)

  • M.F. Kiani, Y. Yuan, X. Chen, L. Smith, M.W. Gaber, D.J. Goetz, Pharm. Res. 19, 1317–1322 (2002)

    Article  Google Scholar 

  • M.S. Kluger, Adv. Dermatol. 20, 163–201 (2004)

    Google Scholar 

  • H. Lu, L.Y. Koo, W.M. Wang, D.A. Lauffenburger, L.G. Griffith, K.F. Jensen, Anal. Chem. 76, 5257–64 (2004)

    Article  Google Scholar 

  • F.W. Luscinskas, G.S. Kansas, H. Ding, P. Pizcueta, B. Schleiffenbaum, T.F. Tedder, M.A. Gimbrone Jr., J. Cell Biol. 125, 1417–1427 (1994)

    Article  Google Scholar 

  • M.R. Maxey, J.J. Riley, Phys. Fluids. 26, 883–889 (1983)

    Article  MATH  Google Scholar 

  • S.M. Moghimi, A.C. Hunter, J.C. Murray, FASEB J. 19, 311–330 (2005)

    Article  Google Scholar 

  • M. Molla, J. Panes, World J. Gastroenterol. 13, 3043–3046 (2007)

    Google Scholar 

  • M.M. Muller, A. Griesmacher, Clin. Chem. Lab. Med. 38, 77–85 (2000)

    Google Scholar 

  • Y. Nahmias, F. Berthiaume, M.L. Yarmush, Adv. Biochem. Eng. Biotechnol. 103, 309–29 (2007)

    Google Scholar 

  • V. Nguyen, M.W. Gaber, M.R. Sontag, M.F. Kiani, Radiat. Res. 154, 531–536 (2000)

    Article  Google Scholar 

  • K.A. Pasyk, B.A. Jakobczak, Eur J Dermatol. 14, 209–13 (2004)

    Google Scholar 

  • K.D. Patel, J. Immunol. 162, 6209–16 (1999)

    Google Scholar 

  • V.R. Patil, C.J. Campbell, Y.H. Yuan, S.M. Slack, D.J. Goetz, Biophys. J. 80, 1733–1743 (2001)

    Article  Google Scholar 

  • C.B. Patillo, F. Sari-Sarraf, R. Nallamothu, B.M. Moore, G.C. Wood, M.F. Kiani, Pharm. Res. 22, 1117–1120 (2005)

    Article  Google Scholar 

  • B. Prabhakarpandian, D.J. Goetz, R.A. Swerlick, X. Chen, M.F. Kiani, Microcirculation. 8, 355–64 (2001)

    Google Scholar 

  • R.M. Rao, L. Yang, G. Garcia-Cardena, F.W. Luscinskas, Circ. Res. 101, 234–47 (2007)

    Article  Google Scholar 

  • N.M. Roth, M.F. Kiani, Ann. Biomed. Eng. 27, 42–47 (1999)

    Article  Google Scholar 

  • N.M. Roth, M.R. Sontag, M.F. Kiani, Radiat. Res. 151, 270–277 (1999)

    Article  Google Scholar 

  • H.S. Sakhalkar, M.K. Dalal, A.K. Salem, R. Ansari, J. Fu, M.F. Kiani, D.T. Kurjiaka, J. Hanes, K.M. Shakesheff, D.F. Goetz, Proc. Natl. Acad. Sci. 100, 15895–15900 (2003)

    Article  Google Scholar 

  • R.C. Scott, B. Wang, R. Nallamothu, C.B. Pattillo, G. Perez-Liz, A.C. Issekutz, L. Del Valle, G.C. Wood, M.F. Kiani, Biotechnol. Bioeng. 96, 795–802 (2007)

    Article  Google Scholar 

  • D.D. Spragg, D.R. Alford, R. Greferath, C.E. Larsen, K.D. Lee, G.C. Gurtner, M.I. Cybulsky, D.F.J. Tess, D.J. Goetz, News Physiol. Sci. 18, 186–190 (2003)

    Google Scholar 

  • T.A. Springer, Cell 76, 301–314 (1994)

    Article  Google Scholar 

  • D.F.J. Tees, D.J. Goetz, News Physiol. Sci. 18, 186–190 (2003)

    Google Scholar 

  • F.M. White, Viscous Fluid Flow. McGraw-Hill, New York, NY (1991)

  • H. Yuan, D.J. Goetz, M.W. Gaber, A.C. Issekutz, T.E. Merchant, M.F. Kiani, Radiat. Res. 163, 544–551 (2005)

    Article  Google Scholar 

  • X. Zou, V.R. Shinde Patil, N.M. Dagia, L.A. Smith, M.J. Wargo, K.A. Interliggi, C.M. Lloyd, D.F. Tess, B. Walcheck, M.B. Lawrence, D.J. Goetz, Am. J. Physiol. Cell Physiol. 289, C415–24 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank Dr. Bin Wang for help during the dye perfusion studies. We gratefully acknowledge financial support from NIH (2R44HL076034-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivshankar Sundaram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhakarpandian, B., Pant, K., Scott, R.C. et al. Synthetic microvascular networks for quantitative analysis of particle adhesion. Biomed Microdevices 10, 585–595 (2008). https://doi.org/10.1007/s10544-008-9170-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9170-y

Keywords

Navigation