Skip to main content

Advertisement

Log in

An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Recently, the symplectic exponentially-fitted methods for Hamiltonian systems with periodic or oscillatory solutions have been attracting a lot of interest. As an alternative to them, in this paper, we propose a class of energy-preserving exponentially-fitted methods. For this aim, we show sufficient conditions for energy-preservation in terms of the coefficients of continuous stage Runge–Kutta (RK) methods, and extend the theory of exponentially-fitted RK methods in the context of continuous stage RK methods. Then by combining these two theories, we derive second and fourth order energy-preserving exponentially-fitted schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  2. Ascher, U.M., Chin, H., Reich, S.: Stabilization of DAEs and invariant manifolds. Numer. Math. 67, 131–149 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ascher, U.M., Reich, S.: On some difficulties in integrating highly oscillatory Hamiltonian systems, pp. 281–296. In: Computational Molecular Dynamics. Lecture Notes in Computational Science and Engineering, vol. 4. Springer, Berlin (1999)

  4. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comp. Math. Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Butcher, J.C.: An algebraic theory of integration methods. Math. Comp. 26, 79–106 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Sixth-order symmetric and symplectic exponentially fitted modified Runge–Kutta methods of Gauss type. Comput. Phys. Comm. 178, 732–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Structure preservation of exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 218, 421–434 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Sixth-order symmetric and symplectic exponentially fitted Runge–Kutta methods of the Gauss type. J. Comput. Appl. Math. 223, 387–398 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: On high order symmetric and symplectic trigonometrically fitted Runge–Kutta methods with an even number of stages. BIT 50, 3–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Symmetric and symplectic exponentially fitted Runge-Kutta methods of high order. Comput. Phys. Commun. 181, 2044–2056 (2010)

    Article  MATH  Google Scholar 

  11. Celledoni, E., McLachlan, R.I., McLaren, D.I., Owren, B., Quispel, G.R.W., Wright, W.M.: Energy-preserving Runge–Kutta methods. ESAIM Math. Model. Numer. Anal. 43, 645–649 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Celledoni, E., McLachlan, R.I., Owren, B., Quispel, G.R.W.: Energy-preserving integrators and the structure of B-series. Tech. rep., NTNU preprint series: Numerics No.5/2009

  13. Chartier, P., Faou, E., Murua, A.: An algebraic approach to invariant preserving integators: the case of quadratic and Hamiltonian invariants. Numer. Math. 103, 575–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen, D., Hairer, E.: Linear energy-preserving integrators for Poisson systems. BIT 51, 91–101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006)

    Chapter  Google Scholar 

  16. Dahlby, M., Owren, B., Yaguchi, T.: Preserving multiple first integrals by discrete gradients. J. Phys. A 44, 305, 205 (2011)

    Google Scholar 

  17. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. Z Angew. Math. Phys. 30, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Num. Anal. 30, 1467–1482 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Franco, J.M.: An embedded pair of exponentially fitted explicit Runge–Kutta methods. J. Comput. Appl. Math. 149, 407–414 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Franco, J.M.: Exponentially fitted explicit Runge–Kutta-Nyström methods. J. Comput. Appl. Math. 167, 1–19 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Franco, J.M.: Runge-Kutta methods adapted to the numerical integration of oscillatory problems. Appl. Numer. Math. 50, 427–443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Franco, J.M.: Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Commun. 177, 479–492 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Garcia-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)

    Article  MathSciNet  Google Scholar 

  24. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A 39, 5495 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hairer, E.: Symmetric projection methods for differential equations on manifolds. BIT 40, 726–734 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hairer, E.: Geometric integration of ordinary differential equations on manifolds. BIT 41, 996–1007 (2001)

    Article  MathSciNet  Google Scholar 

  29. Hairer, E.: Energy-preserving variant of collocation methods. JNAIAM 5, 73–84 (2010)

    MathSciNet  Google Scholar 

  30. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Heidelberg (2006)

    Google Scholar 

  32. Hairer, E., McLachlan, R.I., Razakarivony, A.: Achieving Brouwer’s law with implicit Runge–Kutta methods. BIT 48, 231–243 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hairer, E., Zbinden, C.J.: On conjugate symplecticity of B-seried integrator. IMA J. Numer. Anal. 33, 57–79 (2013)

    Google Scholar 

  34. Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lasagni, F.M.: Canonical Runge–Kutta methods. ZAMP 39, 952–953 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  37. Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65–75 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ozawa, K.: A functional fitting Runge–Kutta method with variable coefficients. Japan J. Indust. Appl. Math. 18, 107–130 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ozawa, K.: A functionally fitted three-stage explicit singly diagonally implicit Runge–Kutta method. Japan J. Indust. Appl. Math. 22, 403–427 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Paternoster, B.: Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials. Appl. Numer. Math. 28, 401–412 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41, 045, 206 (2008)

    Google Scholar 

  42. Quispel, G.R.W., Turner, G.S.: Discrete gradient methods for solving ODEs numerically while preserving a first integral. J. Phys. A 29, L341–L349 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sanz-Serna, J.M.: Runge–Kutta schemes for Hamiltonian systems. BIT 28, 877–883 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)

    Book  MATH  Google Scholar 

  45. Simos, T.E.: An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115, 1–8 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Suris, Y.B.: On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems (in Russian). In: Filippov, S.S. (ed.) Numerical Solution of Ordinary Differential Equations, pp. 148–160. Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow (1988)

  47. Tang, W., Sun, Y.: Time finite element methods: a unified framework for numerical discretizations of ODEs. Appl. Math. Comput. 219, 2158–2179 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Van Daele, M., Vanden Berghe, G.: Geometric numerical integration by means of exponentially-fitted methods. Appl. Numer. Math. 57, 415–435 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Van de Vyver, H.: A symplectic exponentially fitted modified Runge–Kutta-Nyström method for the numerical integration of orbital problems. New Astron. 10, 261–269 (2005)

    Article  Google Scholar 

  50. Van de Vyver, H.: A fourth-order symplectic exponentially fitted integrator. Comput. Phys. Commun. 174, 255–262 (2006)

    Article  MATH  Google Scholar 

  51. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted explicit Runge-Kutta methods. Comput. Phys. Commun. 123, 7–15 (1999)

    Google Scholar 

  52. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 125, 107–115 (2000)

    Google Scholar 

  53. Vanden Berghe, G., Ixaru, L.G., De Meyer, H.: Frequency determination and step-length control for exponentially-fitted Runge-Kutta methods. J. Comput. Appl. Math. 132, 95–105 (2001)

    Google Scholar 

  54. Vanden Berghe, G., Van Daele, M.: Symplectic exponentially-fitted four-stage Runge-Kutta methods of the Gauss type. Numer. Algor. 56, 591–608 (2011)

    Google Scholar 

  55. Vanden Berghe, G., Van Daele, M., Vande Vyver, H.: Exponential fitted Runge–Kutta methods of collocation type: fixed or variable knot points? J. Comput. Appl. Math. 159, 217–239 (2003)

  56. Wu, X., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhong, G., Marsden, J.E.: Lie-Poisson Hamilton–Jacobi theory and Lie–Poisson integrators. Phys. Lett. A 133, 134–139 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is thankful for various comments by the reviewers. The author is grateful to Takayasu Matsuo for his careful reading of this manuscript and helpful suggestions. The author is supported by the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuto Miyatake.

Additional information

Communicated by Christian Lubich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyatake, Y. An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems. Bit Numer Math 54, 777–799 (2014). https://doi.org/10.1007/s10543-014-0474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0474-4

Keywords

Mathematics Subject Classification (2010)

Navigation