Skip to main content
Log in

Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Copper is an essential yet toxic metal ion. To satisfy cellular requirements, while, at the same time, minimizing toxicity, complex systems of copper trafficking have evolved in all cell types. The best conserved and most widely distributed of these involve Atx1-like chaperones and P1B-type ATPase transporters. Here, we discuss current understanding of how these chaperones bind Cu(I) and transfer it to the Atx1-like N-terminal domains of their cognate transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achila D, Banci L, Bertini I et al (2006) Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAH1 in copper uptake. Proc Natl Acad Sci USA 103:5729–5734

    Article  PubMed  CAS  Google Scholar 

  • Anastassopoulou I, Banci L, Bertini I et al (2004) Solution structure of the apo and copper (I)-loaded human metallochaperone HAH1. Biochemistry 43:13046–13053

    Article  PubMed  CAS  Google Scholar 

  • Argüello JM (2003) Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. J Membr Biol 195:93–108

    Article  PubMed  CAS  Google Scholar 

  • Arnesano F, Banci L, Bertini I et al (2004) A docking approach to the study of copper trafficking proteins: interaction between metallochaperones and soluble domains of copper ATPases. Structure 12:669–676

    Article  PubMed  CAS  Google Scholar 

  • Arnesano F, Banci L, Bertini I et al (2001a) Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J Biol Chem 276:41365–41376

    Article  CAS  Google Scholar 

  • Arnesano F, Banci L, Bertini I et al (2002) Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genet Res 12:255–271

    Article  CAS  Google Scholar 

  • Arnesano F, Banci L, Bertini I et al (2001b) Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. Biochemistry 40:1528–1539

    Article  CAS  Google Scholar 

  • Arnesano F, Banci L, Bertini I et al (2003) A redox switch in CopC: an intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites. Proc Nat Acad Sci USA 100:3814–3819

    Article  PubMed  CAS  Google Scholar 

  • Askwith C, Eide D, Van Ho A et al (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410

    Article  PubMed  CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Article  PubMed  CAS  Google Scholar 

  • Babcock GT, Wikstrom M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356:301–309

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Cantini F et al (2006a) The Atx1-Ccc2 complex is a metal-mediated protein-protein interaction. Nat Chem Biol 2:367–368

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S et al (2005) An NMR study of the interaction between the human copper (I) chaperone and the second and fifth metal-binding domains of the Menkes protein. FEBS J 272:865–871

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S et al (2006b) The delivery of copper for thylakoid import observed by NMR. Proc Natl Acad Sci USA 103:8320–8325

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S et al (2003a) Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. Biochemistry 42:1939–1949

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S et al (2002) Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. J Mol Biol 317:415–429

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S et al (2003b) A core mutation affecting the folding properties of a soluble domain of the ATPase protein CopA from Bacillus subtilis. J Mol Biol 331:473–484

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S et al (2003c) Structural basis for the function of the N-terminal domain of the ATPase CopA from Bacillus subtilis. J Biol Chem 278:50506–50513

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S et al (2001a) Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(I)-loaded states. J Biol Chem 276:8415–8426

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S et al (2004a) Solution structures of a cyanobacterial metallochaperone: insight into an atypical copper-binding motif. J Biol Chem 279:27502–27510

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, Del Conte R et al (2004b) Solution structure and backbone dynamics of the Cu(I) and apo forms of the second metal-binding domain of the menkes protein ATP7A. Biochemistry 43:3396–3403

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, Del Conte R et al (2003d) X-ray absorption and NMR spectroscopic studies of CopZ, a copper chaperone in Bacillus subtilis: the coordination properties of the copper ion. Biochemistry 42:2467–2474

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, Del Conte R et al (2001b) Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry 40:15660–15668

    Article  CAS  Google Scholar 

  • Blindauer CA, Harrison MD, Robinson AK et al (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45:1421–1432

    Article  PubMed  CAS  Google Scholar 

  • Borrelly GPM, Blindauer CA, Schmid R et al (2004) Accelerated publication: a novel copper site in a cyanobacterial metallochaperone. Biochem J 378:293–297

    Article  PubMed  CAS  Google Scholar 

  • Botuyan MV, Toy-Palmer A, Chung J et al (1996) NMR solution structure of Cu(I) rusticyanin from thiobacillus ferrooxidans: structural basis for the extreme acid stability and redox potential. J Mol Biol 263:752–767

    Article  PubMed  CAS  Google Scholar 

  • Brewer GJ (2000) Recognition, diagnosis, and management of Wilson’s disease. Exp Biol Med 223:39–46

    Article  CAS  Google Scholar 

  • Brewer GJ (2006) Novel therapeutic approaches to the treatment of Wilson’s disease. Expert Opin Pharmacother 7:317–324

    Article  PubMed  CAS  Google Scholar 

  • Brown K, Djinovic-Carugo K, Haltia T et al (2000) Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase: evidence of a bridging inorganic sulfur. J Biol Chem 275:41133–41136

    Article  PubMed  CAS  Google Scholar 

  • Cater MA, Forbes J, La Fontaine S et al (2004) Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites. Biochem J 380:805–813

    Article  PubMed  CAS  Google Scholar 

  • Cobine P, Wickramasinghe WA, Harrison MD et al (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30

    Article  PubMed  CAS  Google Scholar 

  • Cobine PA, George GN, Jones CE et al (2002) Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry 41:5822–5829

    Article  PubMed  CAS  Google Scholar 

  • Cobine PA, George GN, Winzor DJ et al (2000) Stoichiometry of complex formation between copper(I) and the N-terminal domain of the Menkes protein. Biochemistry 39:6857–6863

    Article  PubMed  CAS  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA et al (1999) Advanced inorganic chemistry. Wiley, New York

    Google Scholar 

  • Cuff ME, Miller KI, Van Holde KE et al (1998) Crystal structure of a functional unit from Octopus hemocyanin. J Mol Biol 278:855–870

    Article  PubMed  CAS  Google Scholar 

  • Dameron CT, Winge DR, George GN et al (1991) A copper-thiolate polynuclear cluster in the ACE1 transcription factor. Proc Natl Acad Sci USA 88:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, USA

  • DeSilva TM, Veglia G, Opella SJ (2005) Solution structures of the reduced and Cu(I) bound forms of the first metal binding sequence of ATP7A associated with Menkes disease. Proteins 61:1038–1049

    Article  PubMed  CAS  Google Scholar 

  • Dmitriev O, Tsivkovskii R, Abildgaard F et al (2006) Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations. Proc Natl Acad Sci USA 103:5302–5307

    Article  PubMed  CAS  Google Scholar 

  • Fan B, Grass G, Rensing C et al (2001) Escherichia coli CopA N-terminal cys(X)2cys motifs are not required for copper resistance or transport. Biochem Biophys Res Comm 286:414–418

    Article  PubMed  CAS  Google Scholar 

  • Fan B, Rosen BP (2002) Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J Biol Chem 277:46987–46992

    Article  PubMed  CAS  Google Scholar 

  • Farrar JA, Neese F, Lappalainen P et al (1996) The electronic structure of Cu(A): a novel mixed-valence dinuclear copper electron-transfer center. J Am Chem Soc 118:11501–11514

    Article  CAS  Google Scholar 

  • Fenton DE (1995) Biocoordination chemistry. Oxford University, Oxford

    Google Scholar 

  • Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements. Oxford University, Oxford

    Google Scholar 

  • Fridovich I (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264:7761–7764

    PubMed  CAS  Google Scholar 

  • Gaballa A, Cao M, Helmann JD (2003) Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. Microbiol 149:3413–3421

    Article  CAS  Google Scholar 

  • Garcia-Horsman JA, Barquera B, Rumbley J et al (1994) The superfamily of heme-copper respiratory oxidases. J Bacteriol 176:5587–5600

    PubMed  CAS  Google Scholar 

  • Gitschier J, Moffat B, Reilly D et al (1998) Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nat Struct Biol 5:47–54

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Meth Enzymol 186:1–85

    Article  PubMed  CAS  Google Scholar 

  • Hamza I, Schaefer M, Klomp LWJ et al (1999) Interaction of the copper chaperone Hah1 with the Wilson disease protein is essential for copper homeostasis. Proc Natl Acad Sci USA 96:13363–13368

    Article  PubMed  CAS  Google Scholar 

  • Harrison MD, Jones CE, Solioz M et al (2000) Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci 25:29–32

    Article  PubMed  CAS  Google Scholar 

  • Hart PJ, Nersissian AM, Herrmann RG et al (1996) A missing link in cupredoxins: crystal structure of cucumber stellacyanin at 1.6 Å resolution. Protein Sci 5:2175–2183

    Article  PubMed  CAS  Google Scholar 

  • Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458

    Article  PubMed  CAS  Google Scholar 

  • Huffman DL, O’Halloran TV (2000) Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper transporter, Ccc2. J Biol Chem 275:18611–18614

    Article  PubMed  CAS  Google Scholar 

  • Hung IH, Casareno RLB, Labesse G et al (1998) Hah1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem 273:1749–1754

    Article  PubMed  CAS  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B et al (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    Article  PubMed  CAS  Google Scholar 

  • Jensen LT, Howard WR, Strain JJ et al (1996) Enhanced effectiveness of copper ion buffering by CUP1 metallothionein compared with CRS5 metallothionein in Saccharomyces cerevisiae. J Biol Chem 271:18514–18519

    Article  PubMed  CAS  Google Scholar 

  • Jones CE, Daly NL, Cobine PA et al (2003) Structure and metal binding studies of the second copper binding domain of the Menkes ATPase. J Struct Biol 143:209–218

    Article  PubMed  CAS  Google Scholar 

  • Kaim W, Rall J (1996) Copper a “modern” bioelement. Angew Chem Int Ed 35:43–60

    Article  CAS  Google Scholar 

  • Karlsson BG, Tsai L-C, Nar H et al (1997) X-ray structure determination and characterization of the Pseudomonas aeruginosa azurin mutant Met121Glu. Biochemistry 36:4089–4095

    Article  PubMed  CAS  Google Scholar 

  • Kihlken MA, Leech AP, Le Brun NE (2002) Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis. Biochem J 368:729–739

    Article  PubMed  CAS  Google Scholar 

  • Klomp LWJ, Lin S-J, Yuan DS et al (1997) Identification and functional expression of Hah1, a novel human gene involved in copper homeostasis. J Biol Chem 272:9221–9226

    Article  PubMed  CAS  Google Scholar 

  • Koch KA, Peña MMO, Thiele DJ (1997) Copper-binding motifs in catalysis, transport, detoxification and signaling. Chem Biol 4:549–560

    Article  PubMed  CAS  Google Scholar 

  • Labbe S, Thiele DJ (1999) Pipes and wiring: the regulation of copper uptake and distribution in yeast. Trends Microbiol 7:500–505

    Article  PubMed  CAS  Google Scholar 

  • Larin D, Mekios C, Das K et al (1999) Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, Hah1p. J Biol Chem 274:28497–28504

    Article  PubMed  CAS  Google Scholar 

  • Lin S-J, Culotta VC (1995) The atx1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci USA 92:3784–3788

    Article  PubMed  CAS  Google Scholar 

  • Lin S-J, Pufahl RA, Dancis A et al (1997) A role for the Saccharomyces cerevisiae atx1 gene in copper trafficking and iron transport. J Biol Chem 272:9215–9220

    Article  PubMed  CAS  Google Scholar 

  • Lu ZH, Solioz M (2001) Copper-induced proteolysis of the CopZ copper chaperone of Enterococcus hirae. J Biol Chem 276:47822–47827

    PubMed  CAS  Google Scholar 

  • Lutsenko S, Petris MJ (2002) Function and regulation of the mammalian copper-transporting ATPases: insights from biochemical and cell biological approaches. J Membr Biol 191:1–12

    Article  CAS  Google Scholar 

  • Lutsenko S, Petrukhin K, Cooper MJ et al (1997) N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson’s and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal–binding repeat. J Biol Chem 272:18939–18944

    Article  PubMed  CAS  Google Scholar 

  • Machonkin TE, Solomon EI (2000) The thermodynamics, kinetics, and molecular mechanism of intramolecular electron transfer in human ceruloplasmin. J Am Chem Soc 122:12547–12560

    Article  CAS  Google Scholar 

  • Magnus KA, Ton-That H, Carpenter JE (1994) Recent structural work on the oxygen transport protein hemocyanin. Chem Rev 94:727–735

    Article  CAS  Google Scholar 

  • Malmstrom BG, Leckner J (1998) The chemical biology of copper. Curr Opin Chem Biol 2:286–292

    Article  PubMed  CAS  Google Scholar 

  • Mason B, Moore CB (1982) Principles of geochemistry. Wiley, New York

    Google Scholar 

  • Multhaup G, Strausak D, Bissig K-D et al (2001) Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun 288:172–177

    Article  PubMed  CAS  Google Scholar 

  • Murray KF, Lam D, Kowdley KV (2003) Current and future therapy in haemochromatosis and Wilson’s disease. Expert Opin Pharmacother 4:2239–2251

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PL, Carafoli E (1987) Ion motive ATPases I. Ubiquity, properties, and significance to cell function. Trends Biochem Sci 12:146–150

    Article  CAS  Google Scholar 

  • Phung LT, Ajlani G, Haselkorn R (1994) P-type ATPase from the cyanobacterium Synechococcus 7942 related to the human Menkes and Wilson disease gene products. Proc Natl Acad Sci USA 91:9651–9654

    Article  PubMed  CAS  Google Scholar 

  • Portnoy ME, Rosenzweig AC, Rae T et al (1999) Structure-function analyses of the Atx1 metallochaperone. J Biol Chem 274:15041–15045

    Article  PubMed  CAS  Google Scholar 

  • Pufahl RA, Singer CP, Peariso KL et al (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278:853–856

    Article  PubMed  CAS  Google Scholar 

  • Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  PubMed  CAS  Google Scholar 

  • Radford DS, Kihlken MA, Borrelly GPM et al (2003) CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol Lett 220:105–112

    Article  PubMed  CAS  Google Scholar 

  • Ralle M, Lutsenko S, Blackburn NJ (2003) X-ray absorption spectroscopy of the copper chaperone Hah1 reveals a linear two-coordinate Cu(I) center capable of adduct formation with exogenous thiols and phosphines. J Biol Chem 278:23163–23170

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen T, Berks BC, Sanders-Loehr J et al (2000) The catalytic center in nitrous oxide reductase, Cu(Z), is a copper-sulfide cluster. Biochemistry 39:12753–12756

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig AC (2001) Copper delivery by metallochaperone proteins. Acc Chem Res 34:119–128

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig AC, Huffman DL, Hou MY et al (1999) Crystal structure of the Atx1 metallochaperone protein at 1.02 Å resolution. Structure 7:605–617

    Article  PubMed  CAS  Google Scholar 

  • Sazinsky MH, Agarwal S, Argüello JM et al (2006a) Structure of the actuator domain from the Archaeoglobus fulgidus Cu+-ATPase. Biochemistry 45:9949–9955

    Article  CAS  Google Scholar 

  • Sazinsky MH, Mandal AK, Argüello JM et al (2006b) Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase. J Biol Chem 281:11161–11166

    Article  CAS  Google Scholar 

  • Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195

    Article  PubMed  CAS  Google Scholar 

  • Strausak D, La Fontaine S, Hill J et al (1999) The role of GMXCXXC metal binding sites in the copper-induced redistribution of the Menkes protein. J Biol Chem 274:11170–11177

    Article  PubMed  CAS  Google Scholar 

  • Strausak D, Solioz M (1997) Copy is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem 272:8932–8936

    Article  PubMed  CAS  Google Scholar 

  • Sun ML, Grass G, Rensing C et al (2002) The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem Biophys Res Commun 295:616–620

    Article  CAS  Google Scholar 

  • Tanchou V, Gas F, Urvoas A et al (2004) Copper-mediated homo-dimerisation for the Hah1 metallochaperone. Biochem Biophys Res Commun 325:388–394

    Article  PubMed  CAS  Google Scholar 

  • Tapia L, González-Agüero M, Cisternas MF et al (2004) Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochem J 378:617–624

    Article  PubMed  CAS  Google Scholar 

  • Tottey S, Rich PR, Rondet SAM et al (2001) Two Menkes-type ATPases supply copper for photosynthesis in Synechocystis PCC 6803. J Biol Chem 276:19999–20004

    Article  PubMed  CAS  Google Scholar 

  • Tottey S, Rondet SAM, Borrelly GPM et al (2002) A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J Biol Chem 277:5490–5497

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H et al (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E et al (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269:1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Van Dongen EM, Klomp LW, Merkx M (2004) Copper-dependent protein-protein interactions studied by yeast two-hybrid analysis. Biochem Biophys Res Commun 323:789–795

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Hol WG (1989) Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 Å resolution. J Mol Biol 209:249–279

    Article  PubMed  CAS  Google Scholar 

  • Voskoboinik I, Strausak D, Greenough M et al (1999) Functional analysis of the N-terminal CXXC metal-binding motifs in the human Menkes copper-transporting P-type ATPase expressed in cultured mammalian cells. J Biol Chem 274:22008–22012

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Huster D, Ralle M et al (2004) The N-terminal metal-binding Site 2 of the Wilson’s disease protein plays a key role in the transfer of copper from Atox1. J Biol Chem 279:15376–15384

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Tsivkovskii R, Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277:27953–27959

    Article  PubMed  CAS  Google Scholar 

  • Wernimont AK, Huffman DL, Finney LA et al (2003) Crystal structure and dimerization equilibria of PcoC, a methionine-rich copper resistance protein from Escherichia coli. J Biol Inorg Chem 8:185–194

    Article  PubMed  CAS  Google Scholar 

  • Wernimont AK, Huffman DL, Lamb AL et al (2000) Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol 7:766–771

    Article  PubMed  CAS  Google Scholar 

  • Wimmer R, Herrmann T, Solioz M et al (1999) NMR structure and metal interactions of the CopZ copper chaperone. J Biol Chem 274:22597–22603

    Article  PubMed  CAS  Google Scholar 

  • Zaitseva I, Zaitsev V, Card G et al (1996) The X-ray structure of human serum ceruloplasmin at 3.1 Å: nature of the copper centres. J Biol Inorg Chem 1:15–23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CS thanks the UK’s BBSRC for the award of a research studentship. NLB thanks the BBSRC and the Wellcome Trust for supporting his work on metals in cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick E. Le Brun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singleton, C., Le Brun, N.E. Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer. Biometals 20, 275–289 (2007). https://doi.org/10.1007/s10534-006-9068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9068-1

Keywords

Navigation