Skip to main content

Advertisement

Log in

Richness gradients of stream invertebrates across the USA: taxonomy- and trait-based approaches

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Large-scale diversity patterns in relationship to environmental factors at multiple spatial scales have been well-studied for many taxonomic groups; however, freshwater ecosystems remain understudied. Biodiversity is now widely recognized to encompass many more factors than just species numbers, particularly the inclusion of functional attributes. In this study, we examined richness patterns of stream invertebrate genera and their biological traits (“functional” richness) across 364 sites in the contiguous USA. In particular, we focused on the relationship between taxonomy- and trait-based richness to test for functional redundancy in stream communities. Further, we obtained environmental data to model the relative importance of local and watershed-scale environmental factors and residual spatial (latitude, longitude) influences on taxonomy- and trait-based richness. Trait richness increased linearly with genus richness (slope ≪ 1), although this appears to be an artifact of the restricted range of genus richness in our study (32 genera maximum). Furthermore, trait richness was significantly lower than expected under random community assembly. In contrast, the Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera exhibited a saturating pattern between trait and genus richness and trait richness was no different from random. Our study indicates that there is functional redundancy among stream invertebrate genera, likely as a result of harsh habitat filters limiting trait diversity. Environmental factors (including spatially structured environmental factors) were always more important than spatial factors (latitude, longitude) in structuring richness despite strong longitudinal patterns of all richness measures (these differences were only significant for EPT genera). Finally, we found no significant difference in the relative importance of local and watershed scale environmental factors for taxonomy- and trait-based richness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIC:

Aikake’s Information Criterion

EMAP:

Environmental Monitoring and Assessment Program

EPA:

US Environmental Protection Agency

EPT:

Ephemeroptera, Plectopera, Trichoptera

GIS:

Geographic Information System

SD:

Standard deviation

SE:

Standard error

USA:

United States of America

WSA:

Water Survey of America

References

  • Allan JD, Johnson LB (1997) Catchment-scale analysis of aquatic ecosystems. Freshw Biol 37:107–111

    Article  Google Scholar 

  • Barnes DKA, Griffiths HJ (2008) Biodiversity and biogeography of southern temperate and polar bryozoans. Glob Ecol Biogeogr 17:84–99

    Google Scholar 

  • Baselga A (2008) Determinants of species richness, endemism and turnover in European longhorn beetles. Ecography 31:263–271

    Article  Google Scholar 

  • Bêche LA, Resh VH (2007) Biological traits of benthic macroinvertebrates in California mediterranean-climate streams: long-term annual variability and trait diversity patterns. Fundam Appl Limnol 169:1–23

    Article  Google Scholar 

  • Bêche LA, McElravy EP, Resh VH (2006) Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two mediterranean-climate streams in California, USA. Freshw Biol 51:56–75

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Bonada N, Prat N, Resh VH, Statzner B (2006) Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523

    Article  CAS  PubMed  Google Scholar 

  • Bonada N, Dolédec S, Statzner B (2007) Taxonomic and biological trait differences of stream macroinvertebrate communities between Mediterranean and temperate regions: implications for future climatic scenarios. Glob Chang Biol 13:1658–1671

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversitybased on multiple traits. J Veg Sci 16:533–540

    Article  Google Scholar 

  • Boulton AJ, Boyero L, Covich AP (2008) Are tropical streams ecologically different from temperate streams? In: Dudgeon D et al (eds) Tropical stream ecology. Elsevier, Amsterdam

    Google Scholar 

  • Brosse S, Arbuckle CJ, Townsend CR (2003) Habitat scale and biodiversity: influence of catchment, stream reach and bedform scales on local invertebrate diversity. Biodivers Conserv 12:2057–2075

    Article  Google Scholar 

  • Carnicer J, Diaz-Delgado R (2008) Geographic differences between functional groups in patterns of bird species richness in North America. Acta Oecologica 33:253–264

    Article  Google Scholar 

  • Chapin FS III, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  CAS  PubMed  Google Scholar 

  • Chessel D, Dufour A-B, Thioulouse J (2004) The ade4 package-I: one-table methods. R News 4:5–10

    Google Scholar 

  • Chevenet F, Dolédec S, Chessel D (1994) A fuzzy-coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309

    Article  Google Scholar 

  • Climate Atlas of the United States (2002) version 2.0 (online). Accessed 20 September 2008 at http://gis.ncdc.noaa.gov/website/ims-climatls/index.html

  • Compin A, Céréghino R (2007) Spatial patterns of macroinvertebrate functional feeding groups in streams in relation to physical variables and land-cover in southwestern France. Landsc Ecol 22:1215–1225

    Article  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Díaz S, Symstad AJ, Stuart Chapin F III et al (2003) Functional diversity revealed by removal experiments. Trends Ecol Evol 18:140–146

    Article  Google Scholar 

  • Didham RK, Watts CH, Norton DA (2005) Are systems with strong underlying abiotic regimes more likely to exhibit alternative stable states? Oikos 110:409–416

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Modell 196:483–493

    Article  Google Scholar 

  • Frissell CA, Liss WJ, Warren CE et al (1986) A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manage 10:199–214

    Article  Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34

    Article  Google Scholar 

  • Giller PS, Hillebrand H, Berninger U-G et al (2004) Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos 104:423–436

    Article  Google Scholar 

  • Hagen EM, Webster JR, Benfield EF (2006) Are leaf breakdown rates a useful measure of stream integrity along an agricultural land-use gradient? J North Am Benthol Soc 25:330–343

    Article  Google Scholar 

  • Hawkins BA (2004) Summer vegetation, deglaciation and the anomalous bird diversity gradient in eastern North America. Ecography 13:321–325

    Google Scholar 

  • Hawkins BA, Diniz-Filho JAF (2004) ‘Latitude’ and geographic patterns in species richness. Ecography 27:268–272

    Article  Google Scholar 

  • Hawkins BA, Porter EE, Diniz-Filho JAF (2003) Productivity and history as descriptors of the latitudinal diversity gradient for terrestrial birds. Ecology 84:1608–1623

    Article  Google Scholar 

  • Heino J (2005) Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshw Biol 50:1578–1587

    Article  Google Scholar 

  • Heino J, Mykrä H (2008) Control of stream insect assemblages: roles of spatial configuration and local environmental factors. Ecol Entomol 33:614–622

    Article  Google Scholar 

  • Heino J, Muotka T, Paavola R (2003) Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. J Anim Ecol 72:425–434

    Article  Google Scholar 

  • Heino J, Mykrä H, Kotanen J, Muotka T (2007) Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path? Ecography 30:217–230

    Google Scholar 

  • Heino J, Mykrä H, Kotanen J (2008) Weak relationships between landscape characteristics and multiple facets of stream macroinvertebrate biodiversity in a boreal drainage system. Landsc Ecol 23:417–426

    Article  Google Scholar 

  • Hérault B (2007) Reconciling niche and neutrality through the Emergent Group approach. Perspect Plant Ecol Evol Syst 9:71–78

    Article  Google Scholar 

  • Hof C, Braendle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Glob Ecol Biogeogr 17:539–546

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Jetz W, Rahbek C (2001) Geometric constraints explain much of the species richness pattern in African birds. Proc Natl Acad Sci USA 98:5661–5666

    Article  CAS  PubMed  Google Scholar 

  • Kaufman DM, Willig MR (1998) Latitudinal patterns of mammalian species richness in the New World: the effects of sampling method and faunal group. J Biogeogr 25:795–805

    Article  Google Scholar 

  • Kearns FR, Kelly NM, Carter JL et al (2005) A method for the use of landscape metrics in freshwater research and management. Landsc Ecol 20:113–125

    Article  Google Scholar 

  • Klemm DJ, Blocksom KA, Fulk FA et al (2003) Development and evaluation of a macroinvertebrate biotic integrity index (MBII) for regionally assessing mid-Atlantic highlands streams. Environ Manage 31:656–669

    Article  PubMed  Google Scholar 

  • Lavorel S, Grigulis K, McIntyre S et al (2008) Assessing functional diversity in the field–methodology matters! Funct Ecol 22:134–147

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lemmon PE (1957) A new instrument for measuring forest overstory density. J For 55:667–669

    Google Scholar 

  • Lenat DR, Resh VH (2001) Taxonomy and stream ecology—the benefits of genus- and species-level identifications. J North Am Benthol Soc 20:287–298

    Article  Google Scholar 

  • Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17

    Article  Google Scholar 

  • Loreau M (2004) Does functional redundancy exist? Oikos 104:606–611

    Article  Google Scholar 

  • Maloney KO, Feminella JW, Mitchell RM et al (2008) Land-use legacies and small streams: identifying relationships between historical land-use and contemporary stream conditions. J North Am Benthol Soc 27:280–294

    Article  Google Scholar 

  • McCreadie JW, Adler PH, Hamada N (2005) Patterns of species richness for blackflies (Diptera: Simuliidae) in the Nearctic and Neotropical regions. Ecol Entomol 30:201–209

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E et al (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Mendez PK (2007) Life history of benthic macroinvertebrates: studies and applications to freshwater ecology. Ph.D. Thesis, University of California, Berkeley

  • Merritt RW, Cummins KW, Berg MB (eds) (2008) An introduction to the aquatic insects of North America, 4th edn. Kendall Hunt Publishers, Dubuque

    Google Scholar 

  • Micheli F, Halpern BS (2005) Low functional redundancy in coastal marine assemblages. Ecol Lett 8:391–400

    Article  Google Scholar 

  • Mykrä H, Heino J, Muotka T (2007) Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Glob Ecol Biogeogr 16:149–159

    Article  Google Scholar 

  • Naeem S (1998) Species redundancy and ecosystem reliability. Conserv Biol 12:39–45

    Article  Google Scholar 

  • Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–579

    Article  Google Scholar 

  • Ni J (2003) Plant functional types and climate along a precipitation gradient in temperate grasslands, north-east China and south-east Mongolia. J Arid Environ 53:501–516

    Article  Google Scholar 

  • Oberdorff T, Guegan J-F, Hugueny B (1995) Global scale patterns of fish species richness in rivers. Ecography 18:345–352

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P et al (2008) Vegan: community ecology package. R package version 1.13-1

  • Peck DV, Herlihy AT, Hill BH et al (2006) Environmental Monitoring and Assessment Program—Surface Waters Western Pilot Study: field operations manual for wadeable streams. EPA/620/R-06/003. Office of Research and Development, USA Environmental Protection Agency, Washington, DC

  • Peres-Neto PR, Legendre P, Dray S et al (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758

    Article  PubMed  Google Scholar 

  • Petchey OL, Evans KL, Fishburn IS et al (2007) Low functional diversity and no redundancy in British avian assemblages. J Anim Ecol 76:977–985

    Article  PubMed  Google Scholar 

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J North Am Benthol Soc 16:391–409

    Article  Google Scholar 

  • Qian H (1998) Large-scale biogeographic patterns of vascular plant richness in North America: an analysis at the generic level. J Biogeogr 25:829–836

    Article  Google Scholar 

  • Qian H (1999) Spatial pattern of vascular plant diversity in North America north of Mexico and its floristic relationship with Eurasia. Ann Bot 83:271–283

    Article  Google Scholar 

  • Qian H, Klinka K, Kayahara GJ (1998) Longitudinal patterns of plant diversity in the North American boreal forest. Plant Ecol 138:161–178

    Article  Google Scholar 

  • Qian H, Wang S, He J-S et al (2006) Phytogeographic analysis of seed plant genera in China. Ann Bot 98:1073–1084

    Article  PubMed  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  • Resetarits WJ Jr, Chalcraft DR (2007) Functional diversity within a morphologically conservative genus of predators: implications for functional equivalence and redundancy in ecological communities. Funct Ecol 21:793–804

    Article  Google Scholar 

  • Reyjol Y, Hugueny B, Pont D et al (2007) Patterns in species richness and endemism of European freshwater fish. Glob Ecol Biogeogr 16:65–75

    Article  Google Scholar 

  • Ribera I, Foster GN, Vogler AP (2003) Does habitat use explain large scale species richness patterns of aquatic beetles in Europe? Ecography 26:145–152

    Article  Google Scholar 

  • Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15

    Article  Google Scholar 

  • Ricotta C (2005) A note on functional diversity measures. Basic Appl Ecol 6:479–486

    Article  Google Scholar 

  • Sandin L, Johnson RK (2004) Local, landscape and regional factors structuring benthic macroinvertebrate assemblages in Swedish streams. Landsc Ecol 19:501–514

    Article  Google Scholar 

  • Scheffer M, van Nes EH (2006) Self-organized similarity, the evolutionary emergence of groups of similar species. Proc Nat Acad Sci USA 103:6230–6235

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Brigham CA, Hoeksema JD et al (2000) Linking biodiversity to ecological function: implications for conservation ecology. Oecologia 122:297–305

    Article  Google Scholar 

  • Sponseller RA, Benfield EF, Valett HM (2001) Relationships between land-use, spatial scale and stream macroinvertebrate communities. Freshw Biol 46:1409–1424

    Article  Google Scholar 

  • Statzner B, Moss B (2004) Linking ecological function, biodiversity and habitat: a mini-review focusing on older ecological literature. Basic Appl Ecol 5:97–106

    Article  Google Scholar 

  • Statzner B, Hildrew AG, Resh VH (2001) Species traits and environmental constraints: entomological research and the history of ecological theory. Annu Rev Entomol 46:291–316

    Article  CAS  PubMed  Google Scholar 

  • Statzner B, Dolédec S, Hugueny B (2004) Biological trait composition of European stream invertebrate communities: assessing the effects of various trait filter types. Ecography 27:470–488

    Article  Google Scholar 

  • Statzner B, Bonada N, Dolédec S (2007) Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: a case for a collective public database. Biodivers Conserv 16:3609–3632

    Article  Google Scholar 

  • Stevens RD, Cox SB, Strauss RE et al (2003) Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecol Lett 6:1099–1108

    Article  Google Scholar 

  • Stewart KW, Stark BP (2002) Nymphs of North American stonefly genera, 2nd edn. The Caddis Press, Columbus

    Google Scholar 

  • Suding KN, Lavorel S, Chapin FSIII et al (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol 14:1125–1140

    Article  Google Scholar 

  • Thompson R, Townsend C (2006) A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. J Anim Ecol 75:476–484

    Article  PubMed  Google Scholar 

  • Thorp JH, Covich AP (eds) (2001) Ecology and classification of North American freshwater invertebrates, 2nd edn. Academic Press, London

    Google Scholar 

  • USEPA (2004) Wadeable Streams Assessment: field operations manual. EPA841-B-04-004. U.S. Environmental Protection Agency, Office of Water and Office of Research and Development, Washington, DC

  • USEPA (2006) Wadeable Streams Assessment: a collaborative survey of the nation’s streams, EPA 841-B-06-002. U.S. Environmental Protection Agency, Office of Water and Office of Research and Development, Washington, DC

  • Usseglio-Polatera P, Bournaud M, Richoux P et al (2000) Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshw Biol 43:175–205

    Article  Google Scholar 

  • Vieira NKM, Poff NL, Carlisle DM et al (2006) A database of lotic invertebrate traits for North America. USGS, Reston Virginia. Available at http://pubs.usgus.gov/ds/ds187/

  • Vinson MR, Hawkins CP (1998) Biodiversity of stream insects: variation at local, basin, and regional scales. Annu Rev Entomol 43:271–293

    Article  CAS  PubMed  Google Scholar 

  • Vinson MR, Hawkins CP (2003) Broad-scale geographical patterns in local stream insect genera richness. Ecography 26:751–767

    Article  Google Scholar 

  • Waite IR, Herlihy AT, Larsen DP et al (2000) Comparing strengths of geographic and nongeographic classifications of stream benthic macroinvertebrates in the Mid-Atlantic Highlands, USA. J N Am Benth Soc 19:429–441

    Article  Google Scholar 

  • Walker BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6:18–23

    Article  Google Scholar 

  • Walker BH, Kinzig A, Langridge J (1992) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113

    Article  Google Scholar 

  • Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol 41:115–139

    Article  CAS  PubMed  Google Scholar 

  • Waters TF (1995) Sediment in streams: sources, biological effects, and controls. American Fisheries Society Monograph 7, Bethesda, Maryland

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164

    Article  Google Scholar 

  • Wiggins GB (2004) Caddisflies: the underwater architects. University of Toronto Press, Toronto

    Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Syst 34:273–309

    Article  Google Scholar 

  • Woodward G, Papantoniou G, Edwards F et al (2008) Trophic trickles and cascades in a complex food web: impacts of a keystone predator on stream community structure and ecosystem processes. Oikos 117:683–692

    Article  Google Scholar 

Download references

Acknowledgments

We thank Alan Herlihy and Dave Peck for providing access to the WSA database. Two anonymous reviewers made valuable comments on the manuscript. This research was funded in part by a Marie Curie Incoming International Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah A. Bêche.

Appendix

Appendix

See Tables 6 and 7.

Table 6 The 11 traits described in 61 trait categories used in determining trait richness
Table 7 Pearson correlations (r) among local and watershed environmental variables used in richness models for the 364 sites retained for analysis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bêche, L.A., Statzner, B. Richness gradients of stream invertebrates across the USA: taxonomy- and trait-based approaches. Biodivers Conserv 18, 3909–3930 (2009). https://doi.org/10.1007/s10531-009-9688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9688-1

Keywords

Navigation