Skip to main content

Advertisement

Log in

An ED-based Protocol for Optimal Sampling of Biodiversity

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

While conservation planning requires good biodiversity data, our knowledge of most living groups is scarce and patchy even in well-sampled regions. Therefore, we need methodologies for rapid assessments for particular groups and regions. Maps of any biodiversity surrogate can be interpolated from even a few well-known sites, but such places are usually lacking. We therefore propose a protocol for designing field surveys to obtain good coverage of pattern variations of biodiversity in a given region. To represent biodiversity patterns comprehensively, we use a rule step site-allocation procedure, partially based on Faith and Walker's ED criterion that takes environmental and spatial variation into account, together with other criteria such as survey costs. A preliminary assessment of the adequacy of this site sampling strategy is made. Then a set of complementary sites is selected for further sampling. Using the ED criterion, during the stepwise process a p-median analysis is applied both to an environmental distance matrix and to a spatial distance matrix, to maximize the amount of variation covered by our survey planning. This rule-set allocation procedure is integrated into a continuous sampling design protocol directed to ensure we can sample all biodiversity of a region. This protocol requires the gathering of both biological and environmental information, an assessment of previously available information, the choice of sampling methods and dates, and a continuous assessment of the success of the survey being carried out. An example of the application of this protocol to the survey design of dung beetle (Coleoptera, Scarabaeoidea) diversity in the Comunidad de Madrid (Spain) is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CM:

(Comunidad de Madrid)

DEM:

(Digital Elevation Model)

ED:

(complementarity-based site allocation method developed by Faith and Walker, 1994, 1996)

edi:

(Environmental distances)

GBIF:

(Global Biodiversity Information Facility)

GIS:

(Geographic Information System)

GLM:

(General Linear Models)

PCA:

(Principal Components Analysis)

PCoA:

(Principal Coordinates Analysis)

sdi:

(Spatial Distances)

TU:

(Territorial Unit)

UTM:

(Universal Transverse Mercator)

References

  • M.B. Araújo C.J. Humphries P.J. Densham R. Lampinen W.J.M. Hagemeijer A.J. Mitchell-Jones J.P. Gascet (2001) ArticleTitleWould environmental diversity be a good surrogate for species diversity? Ecography 24 103–110 Occurrence Handle10.1034/j.1600-0587.2001.240112.x

    Article  Google Scholar 

  • M.B. Araújo P.J. Densham C.J. Humphries (2003) ArticleTitlePredicting species diversity with ED: the quest for evidence Ecography 26 380–383 Occurrence Handle10.1034/j.1600-0587.2003.03625.x

    Article  Google Scholar 

  • M.P. Austin (1987) ArticleTitleModels for the analysis of species response to environmental gradients Vegetation 69 35–45 Occurrence Handle10.1007/BF00038685

    Article  Google Scholar 

  • M.P. Austin (1998) ArticleTitleAn ecological perspective on biodiversity investigations: examples from Australian eucalypt forests Ann. Missouri Bot. Garden 85 2–17

    Google Scholar 

  • M.P. Austin P.C. Heyligers (1989) ArticleTitleVegetation survey design for conservation: gradsect sampling of forests in north-eastern New South Wales Biol. Conserv. 50 13–32 Occurrence Handle10.1016/0006-3207(89)90003-7

    Article  Google Scholar 

  • M.P. Austin P.C. Heyligers (1991) New approach to vegetation survey design: gradsect sampling C.R. Margules M.P. Austin (Eds) Nature Conservation: Cost Effective Biological Surveys and Data Analysis CSIRO Australia 31–36

    Google Scholar 

  • D.T. Barnett T.J. Stohlgren (2003) ArticleTitleA nested-intensity design for surveying plant diversity Biodiver. Conserv. 12 255–278 Occurrence Handle10.1023/A:1021939010065

    Article  Google Scholar 

  • J. Bascompte P. Jordano C.J. Melián J.M. Olesen (2003) ArticleTitleThe nested assembly of plant–animal mutualistic networks Proceedings of the National Academy of Sciences of the United States of America 100 9383–9387 Occurrence Handle10.1073/pnas.1633576100 Occurrence Handle12881488

    Article  PubMed  Google Scholar 

  • L. Belbin (1993) ArticleTitleEnvironmental representativeness: regional partitioning and reserve selection Biol. Conserv. 66 223–230 Occurrence Handle10.1016/0006-3207(93)90007-N

    Article  Google Scholar 

  • F.A. Bisby (2000a) ArticleTitleThe quiet revolution: biodiversity informatics and the internet Science 289 2309–2312 Occurrence Handle10.1126/science.289.5488.2309

    Article  Google Scholar 

  • F.A. Bisby (2000b) ArticleTitleResponse to Databases tailored for biodiversity conservation Science 290 2074

    Google Scholar 

  • L.A. Bojorquez-Tapia I. Azuara E. Escurra O. Flores-Villela (1996) ArticleTitleIdentifying conservation priorities in México through geographic information systems and modelling Ecol. Appl. 5 215–231

    Google Scholar 

  • D. Borcard P. Legendre P. Drapeau (1992) ArticleTitlePartialling out the spatial component of ecological variation Ecology 73 1045–1055

    Google Scholar 

  • R.G.H. Bunce C.J. Barr R.T. Clarke D.C. Howard A.M.J. Lane (1996) ArticleTitleLand classification for strategic ecological survey J. Environ. Manag. 47 37–60 Occurrence Handle10.1006/jema.1996.0034

    Article  Google Scholar 

  • Casgrain P. and Legendre P. 2001. The R Package for Multivariate and Spatial Analysis, version 4.0d3.. Dé partement de Sciences Biologiques, Université de Montré al Available at http:// www.fas.umontreal.ca/BIOL/legendre/.

  • J.A. Christen M. Nakamura (2003) ArticleTitleSequential stopping rules for species accumulation J. Agric. Biol. Environ. Stat. 8 184–195 Occurrence Handle10.1198/108571103322161540

    Article  Google Scholar 

  • R.L. Church (2002) ArticleTitleGeographical information systems and location science Comput. Operation Res. 29 541–562 Occurrence Handle10.1016/S0305-0548(99)00104-5

    Article  Google Scholar 

  • Church R.L. and Sorensen P. 1994. Integrating Normative Location Models into GIS: Problems and Prospects with the p-median Model. Technical ReportNGCIAAvailable at http://www.ncgia.ucsb.edu/Publications/.

  • Clark Labs 2000a. Global Change Data Archive Vol. 3. 1 km Global Elevation Model. CD-Rom. Clark University.

  • Clark Labs 2000b. Idrisi 32.2. GIS software package, Clark University, CD-Rom.

  • W.G. Cochran (1977) Sampling Techniques, 3rd edn Wiley and Sons New York

    Google Scholar 

  • R.K. Colwell J.A. Coddington (1994) ArticleTitleEstimating terrestrial biodiversity through extrapolation Philos. Trans. R. Soc. Lond. B 345 101–118

    Google Scholar 

  • Colwell R.K. 2000. EstimateS 6.0b1.. Computer program and manual available at http:// viceroy.eeb.conn.edu/Estimates6/.

  • F.W. Davis S. Goetz (1990) ArticleTitleModeling vegetation–environment association using digital satellite and terrain data Landscape Ecol. 4 69–80

    Google Scholar 

  • A. Dobson (1999) An Introduction to Generalized Linear Models Chapman and Hall/CRC London

    Google Scholar 

  • J.L. Edwards M.A. Lane E.S. Nielsen (2000a) ArticleTitleInteroperability of biodiversity databases: biodiversity information on every desktop Science 289 2312–2314 Occurrence Handle10.1126/science.289.5488.2312

    Article  Google Scholar 

  • J.L. Edwards M.A. Lane E.S. Nielsen (2000b) ArticleTitleResponse to Databases tailored for biodiversity conservation Science 290 2073–2074

    Google Scholar 

  • European Environment Agency 1996. Natural Resources CD-Rom. European Environment Agency.

  • W.F. Fagan P.M. Kareiva (1997) ArticleTitleUsing compiled species list to make biodiversity comparisons among regions: a test case using Oregon butterflies Biol. Conserv. 80 249–259 Occurrence Handle10.1016/S0006-3207(96)00144-9

    Article  Google Scholar 

  • Faith D.P. 2001a. Overlap of species richness and development-opportunity does not imply con- flict. Science Online 293: 1591a, Available at http://www.sciencemag.org/cgi/eletters/293/5535/ 1591.

  • Faith D.P. 2001b. Cost-effective biodiversity planning. Science Online 293: 2207a, Available at http://www.sciencemag.org/cgi/eletters/293/5538/2207.

  • D.P. Faith (2003) ArticleTitleEnvironmental diversity (ED) as a surrogate information for species-level biodiversity Ecography 26 374–379 Occurrence Handle10.1034/j.1600-0587.2003.03300.x

    Article  Google Scholar 

  • D.P. Faith P.A. Walker (1994) DIVERSITY: A Software Package for Sampling Phylogenetical and Environmental Diversity. Reference and User's Guide. v. 2.1. CSIRO Division of Wildlife and Ecology Canberra

    Google Scholar 

  • D.P. Faith P.A. Walker (1996) ArticleTitleEnvironmental diversity: on the best-possible use of surrogate data for assessing the relative biodiversity set of areas Biodiver. Conserv. 5 399–415 Occurrence Handle10.1007/BF00056387

    Article  Google Scholar 

  • Faith D.P. and Ferrier S. 2002. Linking beta-diversity, environmental variation, and biodiversity assessment. Science Online 295, Available at http://www.sciencemag.org/cgi/eletters/295/5555/ 636#504.

  • D.P. Faith P.A. Walker J.R. Ive L. Belbin (1996) ArticleTitleIntegrating conservation and forestry production: exploring trade-offs between biodiversity and production in regional land-use assessment Forest Ecol. Manag. 85 251–260 Occurrence Handle10.1016/S0378-1127(96)03762-0

    Article  Google Scholar 

  • S. Ferrier (2002) ArticleTitleMapping spatial pattern in biodiversity for regional conservation planning: Where to from here? Syst. Biol. 51 331–363 Occurrence Handle10.1080/10635150252899806 Occurrence Handle12028736

    Article  PubMed  Google Scholar 

  • Ferrier S. and Watson G. 1997. An evaluation of the effectiveness of environmental surrogates and modelling techniques in predicting the distribution of biological diversity. Environment Australia.

  • S. Ferrier G. Watson J. Pearce M. Drielsma (2002a) ArticleTitleExtended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling Biodiver. Conserv. 11 2275–2307 Occurrence Handle10.1023/A:1021302930424

    Article  Google Scholar 

  • S. Ferrier M. Drielsma G. Manion G. Watson (2002b) ArticleTitleExtended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modelling Biodiver. Conserv. 11 2309–2338 Occurrence Handle10.1023/A:1021374009951

    Article  Google Scholar 

  • C.H. Flather (1996) ArticleTitleFitting species-accumulation functions and assessing regional land use impacts on avian diversity J. Biogeogr. 23 155–168 Occurrence Handle10.1046/j.1365-2699.1996.00980.x

    Article  Google Scholar 

  • M.J. Fortin (1999) ArticleTitleEffects of sampling unit resolution on the estimation of spatial autocorrelation Écoscience 6 IssueID4 636–641

    Google Scholar 

  • S. Frontier (1976) ArticleTitleÉtude de la décroissance des valeurs propres dans un analyse en composantes principales: comparaison avec le modèle du bâton brisé J. Exp. Mar. Biol. Ecol. 14 217–224 Occurrence Handle10.1016/0022-0981(74)90003-3

    Article  Google Scholar 

  • E. García Hernández J. Bosque Sendra (2001) ArticleTitleBases de datos cartográficas de cobertura global accesibles 'on-line' Geofocus (Recursos) 1 5–10

    Google Scholar 

  • K.J. Gaston (1996) Species richness: measure and measurement K.J. Gaston (Eds) Biodiversity. A Biology of Numbers and Difference Blackwell Science Oxford 77–113

    Google Scholar 

  • A.N. Gillison K.R.W. Brewer (1985) ArticleTitleThe use of gradient directed transects or gradsects in natural resource surveys J. Environ. Manag. 20 103–127

    Google Scholar 

  • N.J. Gotelli R.K. Colwell (2001) ArticleTitleQuantifying biodiversity: procedures and pitfalls in measurement and comparison of species richness Ecol. Lett. 4 379–391 Occurrence Handle10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • J.C. Gower (1966) ArticleTitleSome distance properties of latent root and vector methods used in multivariate analysis Biometrika 53 325–338

    Google Scholar 

  • J.C. Gower (1971) ArticleTitleA general coefficient of similarity and some of its properties Biometrics 27 857–871

    Google Scholar 

  • Y. Haila C.R. Margules (1996) ArticleTitleSurvey research in conservation biology Ecography 19 323–331

    Google Scholar 

  • A. Hirzel A. Guisan (2002) ArticleTitleWhich is the optimal sampling strategy for habitat suitability modelling Ecol. Model. 157 331–341 Occurrence Handle10.1016/S0304-3800(02)00203-X

    Article  Google Scholar 

  • J. Hortal J.M. Lobo (2001) A preliminary methodological approach to model the spatial distribution of biodiversity attributes J. Mateu F. Montes (Eds) Spatio-temporal Modelling of Environmental Processes: Proceedings of the 1st Spanish Workshop of Spatio-temporal Modelling of Environmental Processes Publicacions de la Universitat Jaume I, Collecció “Treballs dȁ9Informàtica I Tecnologia” 10 Castelló de la Plana 211–239

    Google Scholar 

  • J. Hortal J.M. Lobo F. Martín-Piera (2001) ArticleTitleForecasting insect species richness scores in poorly surveyed territories: the case of the Portuguese dung beetles (Col. Scarabaeinae) Biodiver. Conserv. 10 1343–1367 Occurrence Handle10.1023/A:1016624500023

    Article  Google Scholar 

  • J. Hortal J.M. Lobo F. Martín-Piera (2003) ArticleTitleUna estrategia para obtener regionalizaciones bióticas fiables a partir de datos incompletos: el caso de los Escarabeidos (Coleoptera) Ibérico-Baleares Graellsia 59 331–343

    Google Scholar 

  • J. Hortal P. Garcia-Pereira E. García-Barros (2004) ArticleTitleButterfly species richness in mainland Portugal: Predictive models of geographic distribution patterns Ecography 27 68–82 Occurrence Handle10.1111/j.0906-7590.2004.03635.x

    Article  Google Scholar 

  • InstitutionalAuthorNameITGE (1988) Atlas Geocientífico y del Medio Natural de la Comunidad de Madrid Instituto Tecnológico GeoMinero de España Serie Medio AmbienteMadrid

    Google Scholar 

  • L.R. Iverson A.M. Prasad (1998) ArticleTitleEstimating regional plant biodiversity with GIS modelling Diversity and Distributions 4 49–61 Occurrence Handle10.1046/j.1472-4642.1998.00007.x

    Article  Google Scholar 

  • A. Jiménez-Valverde J. Hortal (2003) ArticleTitleLas curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos Rev. Iber. Aracnol 8 151–161

    Google Scholar 

  • Jimé nez-Valverde A. and Lobo J.M. 2004. Determining a combined sampling procedure for a reliable estimation of Araneidae and Thomisidae assemblages (Arachnida: Aranaeae). J. Arachnol., in press.

  • P. Jordano J. Bascompte J.M. Olesen (2003) ArticleTitleInvariant properties in coevolutionary networks of plant-animal interactions Ecol. Lett. 6 69–81 Occurrence Handle10.1046/j.1461-0248.2003.00403.x

    Article  Google Scholar 

  • L. Kish (1965) Survey Sampling Wiley and Sons New York

    Google Scholar 

  • P. Legendre L. Legendre (1998) Numerical Ecology, 2nd edn Elsevier Amsterdam

    Google Scholar 

  • P. Legendre M.R.T. Dale M.J. Fortin J. Gurevitch M. Hohn D. Myers (2002) ArticleTitleThe consequences of spatial structure for the design and analysis of ecological field surveys Ecography 25 601–615 Occurrence Handle10.1034/j.1600-0587.2002.250508.x

    Article  Google Scholar 

  • J.L. León Cortés J. Soberón-Mainero J. Llorente-Bousquets (1998) ArticleTitleAssesing completeness of Mexican sphinx moth inventories through species accumulation functions Divers. Distribut. 4 37–44

    Google Scholar 

  • J.C. Lingoes (1971) ArticleTitleSome boundary conditions for a monotone analysis of symmetric matrices Psychometrika 36 195–203

    Google Scholar 

  • J.M. Lobo F. Martín-Piera (1993) ArticleTitleAnálisis comparado de las comunidades primaverales de escarabeidos coprófagos (Col., Scarabaeoidea) del archipiélago balear Ecologia Mediterranea 3/4 29–41

    Google Scholar 

  • J.M. Lobo F. Martín-Piera (2002) ArticleTitleSearching for a predictive model for Iberian dung beetle species richness based on spatial and environmental variables Conserv. Biol. 16 158–173 Occurrence Handle10.1046/j.1523-1739.2002.00211.x

    Article  Google Scholar 

  • J.M. Lobo F. Martín-Piera C.M. Veiga (1988) ArticleTitleLas trampas pitfall con cebosus posibilidades en el estudio de las comunidades coprófagas de Scarabaeoidea (Col.) I. Características determinantes de su capacidad de captura Revue d'Ecologie et de Biologie du Sol 25 77–100

    Google Scholar 

  • J.M. Lobo I. Sanmartín F. Martín-Piera (1997) ArticleTitleDiversity and Spatial Turnover of dung beetle (Coleoptera: Scarabaeoidea) communities in a protected area of South Europe (Doñana National Park, HuelvaSpain) Elytron 11 71–88

    Google Scholar 

  • J.M. Lobo J.P. Lumaret P. Jay-Robert (1998) ArticleTitleSampling dung beetles in the French Mediterranean area: effects of abiotic factors and farm practices Pedobiologia 42 252–266

    Google Scholar 

  • J.M. Lobo I. Castro J.C. Moreno (2001) ArticleTitleSpatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands Biol. J. Linn. Soc. 73 233–253 Occurrence Handle10.1006/bijl.2001.0543

    Article  Google Scholar 

  • J.M. Lobo J.P. Lumaret P. Jay-Robert (2002) ArticleTitleModelling the species richness distribution of French dung beetles (ColeopteraScarabaeidae) and delimiting the predictive capacity of different groups of explanatory variables Global Ecol. Biogeogr. 11 IssueID4 265–277 Occurrence Handle10.1046/j.1466-822X.2002.00291.x

    Article  Google Scholar 

  • J.I. López-Colón (2000) Familia Geotrupidae F. Martín-Piera J.I. López-Colón (Eds) Fauna Ibérica 14. Scarabaeoidea I ColeopteraMuseo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas Madrid 105–183

    Google Scholar 

  • M. Loreau N. Mouquet A. Gonzalez (2003) ArticleTitleBiodiversity as spatial insurance in heterogeneous landscapes Proceedings of the National Academy of Sciences of the United States of America 100 12765–12770 Occurrence Handle10.1073/pnas.2235465100 Occurrence Handle14569008

    Article  PubMed  Google Scholar 

  • J.P. Lumaret (1980) ArticleTitleAnalyse des communautés de scarabéides coprophages dans le maquis Corse et étude de leur role dans l'utilisation des excréments Ecologia Mediterranea 5 51–58

    Google Scholar 

  • J.P. Lumaret A.A. Kirk (1987) ArticleTitleEcology of dung beetles in the French Mediterranean region (ColeopteraScarabaeidae) Acta Zool. Mexicana 24 1–55

    Google Scholar 

  • C.R. Margules R.L. Pressey (2000) ArticleTitleSystematic conservation planning Nature 405 243–253 Occurrence Handle10.1038/35012251 Occurrence Handle10821285

    Article  PubMed  Google Scholar 

  • C.R. Margules A.O. Nicholls M.P. Austin (1987) ArticleTitleDiversity of Eucalyptus species predicted by a multi-variable environment gradient Oecologia 71 229–232 Occurrence Handle10.1007/BF00377288

    Article  Google Scholar 

  • F. Martín-Piera (2000) Familia Scarabaeidae F. Martín-Piera J.I. López-Colón (Eds) Fauna Ibérica 14. ColeopteraScarabaeoidea I Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas Madrid 205–432

    Google Scholar 

  • F. Martín-Piera C.M. Veiga J.M. Lobo (1992) ArticleTitleEcology and biogeography of dung-beetle communities (ColeopteraScarabaeoidea) in an Iberian mountain range J. Biogeogr. 19 677–691

    Google Scholar 

  • P. McCullagh J.A. Nelder (1989) Generalized Linear Models, 2nd edn. Chapman and Hall London

    Google Scholar 

  • InstitutionalAuthorNameMinisterio de Agricultura and Pesca y Alimentación (1986) Atlas Agroclimático Nacional de España. 2a Ed Dirección General de la Producción AgrariaSubdirección General de la Producción Vegetal Madrid

    Google Scholar 

  • Missios P.C. 1998. Optimal sampling intensity in biodiversity prospecting and the financing of conservation. Annual Conference of the Canadian Economics Association, Available at http:// www.feem.it/gnee/papers.html.

  • C.E. Moreno G. Halffter (2000) ArticleTitleAssessing the completeness of bat biodiversity inventories using species accumulation curves J. Appl. Ecol. 37 149–158 Occurrence Handle10.1046/j.1365-2664.2000.00483.x

    Article  Google Scholar 

  • C.E. Moreno G. Halffter (2001) ArticleTitleOn the measure of sampling effort used in species accumulation curves J. Appl. Ecol. 38 487–490 Occurrence Handle10.1046/j.1365-2664.2001.00590.x

    Article  Google Scholar 

  • H.M. Neave R.B. Cunningham T.W. Norton H.A. Nix (1997) ArticleTitlePreliminary evaluation of sampling strategies to estimate the species richness of diurnal, terrestrial birds using Monte Carlo simulation Ecol. Model. 95 17–27 Occurrence Handle10.1016/S0304-3800(96)00016-6

    Article  Google Scholar 

  • V.J. Neldner D.C. Crossley M. Cofinas (1995) ArticleTitleUsing Geographic Information Systems (GIS) to determine the adequacy of sampling in vegetation surveys Biol. Conserv. 73 1–17 Occurrence Handle10.1016/0006-3207(95)90049-7

    Article  Google Scholar 

  • J.M.C. Pereira R.M. Itami (1991) ArticleTitleGIS-based habitat modelling using logistic multiple regression: a study of the Mt. Graham Red Squirrel Photogramm. Eng. Rem. Sens. 57 1475–1486

    Google Scholar 

  • R.L. Pressey A.O. Nicholls (1989a) ArticleTitleApplication of a numerical algorithm to the selection of reserves in semi-arid New South Wales Biol. Conserv. 50 263–278 Occurrence Handle10.1016/0006-3207(89)90013-X

    Article  Google Scholar 

  • R.L. Pressey A.O. Nicholls (1989b) ArticleTitleEfficiency in conservation evaluation: scoring versus iterative approaches Biol. Conserv. 50 199–218 Occurrence Handle10.1016/0006-3207(89)90010-4

    Article  Google Scholar 

  • R.E. Ricklefs (2004) ArticleTitleA crompehensive framework for global patterns in biodiversity Ecol. Lett. 7 1–15 Occurrence Handle10.1046/j.1461-0248.2003.00554.x

    Article  Google Scholar 

  • R.E. Ricklefs D. Schluter (1993) Species diversity: regional and historical influences R.E. Ricklefs D. Schluter (Eds) Species Diversity in Ecological Communities The University of Chicago Press Chicago 350–364

    Google Scholar 

  • S. Rivas-Martínez (1987) Memoria del Mapa de las Series de Vegetación de España ICONA Madrid

    Google Scholar 

  • A.S.L. Rodrigues K.J. Gaston (2002) ArticleTitleOptimisation in reserve selection procedures - why not? Biol. Conserv. 107 123–129 Occurrence Handle10.1016/S0006-3207(02)00042-3

    Article  Google Scholar 

  • InstitutionalAuthorNameServicio Cartográfico de la Comunidad de Madrid (1996) Mapa de la Comunidad de Madrid. Escala 1:200.000 Consejería de Ordenación Territorial, Comunidad de Madrid Madrid

    Google Scholar 

  • A.T. Smith L. Boitani C. Bibby D. Brackett F. Corsi G.A.B. da Fonseca C. Gascon M. Gimenez Dixon C. Hilton-Taylor G. Mace R.A. Mittermeier J. Rabinovich B.J. Richardson A. Rylands B. Stein S. Stuart J. Thomsen C. Wilson (2000) ArticleTitleDatabases tailored for biodiversity conservation Science 290 2073 Occurrence Handle10.1126/science.290.5499.2073b Occurrence Handle11187830

    Article  PubMed  Google Scholar 

  • J. Soberón J. Llorente (1993) ArticleTitleThe use of species accumulation functions for the prediction of species richness Conserv. Biol. 7 480–488 Occurrence Handle10.1046/j.1523-1739.1993.07030480.x

    Article  Google Scholar 

  • T.R.E. Southwood P.A. Henderson (2000) Ecological Methods, 3rd edn Blackwell Science Oxford

    Google Scholar 

  • InstitutionalAuthorNameStatSoft Inc. (1999) STATISTICA for Windows. Computer program manual StatSoft Inc. TulsaOK

    Google Scholar 

  • D. Tilman D. Wedin J. Knops (1996) ArticleTitleProductivity and sustainability influenced by biodiversity in grassland ecosystems Nature 379 718–720 Occurrence Handle10.1038/379718a0

    Article  Google Scholar 

  • D. Tilman S. Naeem J. Knops P. Reich E. Siemann D. Wedin M. Ritchie J. Lawton (1997) ArticleTitleBiodiversity and ecosystem properties Science 278 1865 Occurrence Handle10.1126/science.278.5345.1865c

    Article  Google Scholar 

  • Veiga C.M. 2000. Los Aphodiinae (ColeopteraAphodiidae) Ibéricos. Unpublished PhD thesis, Universidad Complutense de MadridFacultad de Ciencias Biológicas, Dpto. de Biología Animal I.

  • C.M. Veiga J.M. Lobo F. Martín-Piera (1989) ArticleTitleLas trampas pitfall con cebosus posibilidades en el estudio de las comunidades coprófagas de Scarabaeoidea (Col.) II. Análisis de efectividad Revue d'Ecologie et de Biologie du Sol 26 91–109

    Google Scholar 

  • K.J. Wessels A.S. van Jaarsveld J.D. Grimbeek Prefixvan der M.J. Linde (1998) ArticleTitleAn evaluation of the gradsect biological survey method Biodiver. Conserv. 7 1093–1121 Occurrence Handle10.1023/A:1008899802456

    Article  Google Scholar 

  • R.J. Whittaker K.J. Willis R. Field (2001) ArticleTitleScale and species richness: towards a general, hierarchical theory of species diversity J. Biogeogr. 28 453–470 Occurrence Handle10.1046/j.1365-2699.2001.00563.x

    Article  Google Scholar 

  • S.J. Willott (2001) ArticleTitleSpecies accumulation curves and the measure of sampling effort J. Appl. Ecol. 38 484–486 Occurrence Handle10.1046/j.1365-2664.2001.00589.x

    Article  Google Scholar 

  • S. Yachi M. Loreau (1999) ArticleTitleBiodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis Proc. Nat. Acad. Sci. USA 96 1463–1468 Occurrence Handle10.1073/pnas.96.4.1463 Occurrence Handle9990046

    Article  PubMed  Google Scholar 

  • N.E. Zimmermann F. Kienast (1999) ArticleTitlePredictive mapping of alpine grasslands in Switzerland: Species versus community approach J. Veg. Sci. 10 469–482

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Hortal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hortal, J., Lobo, J.M. An ED-based Protocol for Optimal Sampling of Biodiversity. Biodivers Conserv 14, 2913–2947 (2005). https://doi.org/10.1007/s10531-004-0224-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-004-0224-z

Keywords

Navigation