Skip to main content

Advertisement

Log in

An evolutionary comparative scan for longevity-related oxidative stress resistance mechanisms in homeotherms

  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Key mechanisms relating oxidative stress to longevity from an interespecies comparative approach are reviewed. Long-lived animal species show low rates of reactive oxygen species (ROS) generation and oxidative damage at their mitochondria. Comparative physiology also shows that the specific compositional pattern of tissue macromolecules (proteins, lipids and nucleic acids) in long-lived animal species gives them an intrinsically high resistance to modification that likely contributes to their superior longevity. This is obtained in the case of lipids by decreasing the degree of fatty acid unsaturation, and in the case of proteins by lowering their methionine content. These findings are also substantiated from a phylogenomic approach. Nutritional or/and pharmacological interventions focused to modify some of these molecular traits were translated with modifications in animal longevity. It is proposed that natural selection tends to decrease the mitochondrial ROS generation and to increase the molecular resistance to the oxidative damage in long-lived species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aledo JC, Li Y, de Magalhães JP, Ruíz-Camacho M, Pérez-Claros JA (2010) Mitochondrially encoded methionine is inversely related to longevity in mammals. Aging Cell. doi:10.1111/j.1474-9726.2010.00657.x

  • Andziak B, O’Connor TP, Buffenstein R (2005) Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev 126:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Andziak B, O’Connor TP, Qi W, Dewaal EM, Pierce A, Chaudhuri AR, Van Remmen H, Buffenstein R (2006) High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5:463–471

    Article  PubMed  CAS  Google Scholar 

  • Ayala V, Naudí A, Sanz A, Caro P, Portero-Otin M, Barja G, Pamplona R (2007) Dietary protein restriction decreases oxidative protein damage, peroxidizability index, and mitochondrial complex I content in rat liver. J Gerontol A Biol Sci Med Sci 62:352–360

    PubMed  Google Scholar 

  • Azzu V, Jastroch M, Divakaruni AS, Brand MD (2010) The regulation and turnover of mitochondrial uncoupling proteins. Biochim Biophys Acta 1797:785–791

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Evande R, Kabil O, Ojha S, Taoka S (2003) Reaction mechanism and regulation of cystathionine beta-synthase. Biochim Biophys Acta 1647:30–35

    PubMed  CAS  Google Scholar 

  • Barja G (2000) The flux of free radical attack through mitochondrial DNA is related to aging rate. Aging Clin Exp Res 12:342–355

    CAS  Google Scholar 

  • Barja G (2004) Aging in vertebrates and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev 79:235–251

    Article  PubMed  Google Scholar 

  • Barja G (2007) Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuvenation Res 10:215–224

    Article  PubMed  CAS  Google Scholar 

  • Barja G, Herrero A (1998) Localization at complex I and mechanism of the higher free radical production of brain non-synaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 30:235–243

    Article  PubMed  CAS  Google Scholar 

  • Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14:312–318

    PubMed  CAS  Google Scholar 

  • Barja G, Cadenas S, Rojas C, Pérez-Campo R, López-Torres M (1994) Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds. Free Radic Res 21:317–327

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Hajieva P, Moosmann B (2008) Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc Natl Acad Sci USA 105:16496–16501

    Article  PubMed  CAS  Google Scholar 

  • Bielski BH, Arudi RL, Sutherland MW (1983) A study of the reactivity of HO2/O2-with unsaturated fatty acids. J Biol Chem 258:4759–4761

    PubMed  CAS  Google Scholar 

  • Bjelland S, Seeberg E (2003) Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mut Res 531:37–80

    Article  CAS  Google Scholar 

  • Bohr VA (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 32:804–812

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  • Boveris A, Cadenas E, Stoppani AOM (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444

    PubMed  CAS  Google Scholar 

  • Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472

    Article  PubMed  CAS  Google Scholar 

  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755–767

    Article  PubMed  CAS  Google Scholar 

  • Brenner RR (1984) Effect of unsaturated fatty acids on membrane structure and enzyme kinetics. Prog Lipid Res 23:69–96

    Article  PubMed  CAS  Google Scholar 

  • Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136:1636S–1640S

    PubMed  CAS  Google Scholar 

  • Brown-Borg HM, Porg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33

    Article  PubMed  CAS  Google Scholar 

  • Bruckdorfer R (2005) The basics about nitric oxide. Mol Aspects Med 26:3–31

    Article  PubMed  CAS  Google Scholar 

  • Brunet-Rossinni AK (2004) Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech Ageing Dev 125:11–20

    Article  PubMed  CAS  Google Scholar 

  • Buffenstein R (2005) The naked mole-rat: a new long-living model for human aging research? J Gerontol 60:1369–1377

    Google Scholar 

  • Buttemer WA, Abele D, Costantini D (2010) From bivalves to birds: oxidative stress and longevity. Funct Ecol 24:971–983

    Article  Google Scholar 

  • Caro P, Gómez J, López-Torres M, Sánchez I, Naudí A, Jove M, Pamplona R, Barja G (2008) Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 9:183–196

    Article  PubMed  CAS  Google Scholar 

  • Caro P, Gomez J, Sanchez I, Naudi A, Ayala V, López-Torres M, Pamplona R, Barja G (2009) Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria. Rejuvenation Res 12:421–434

    Article  PubMed  CAS  Google Scholar 

  • Cassis P, Conti S, Remuzzi G, Benigni A (2010) Angiotensin receptors as determinants of life span. Pflugers Archiv Eur J Physiol 459:325–332

    Article  CAS  Google Scholar 

  • Catoni GL (1953) S-adenosylmethionine: a new intermediate formed enzymatically from l-methionine and adenosine triphosphate. J Biol Chem 204:403–416

    PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Chao CC, Ma YS, Stadtman ER (1997) Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proc Natl Acad Sci USA 94:2969–2974

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Chen YR, Chen CL, Zhang L, Green-Church KB, Zweier JL (2005) Superoxide production by NADH dehydrogenase induces self-inactivation with specific protein radical formation. J Biol Chem 280:37339–37348

    Article  PubMed  CAS  Google Scholar 

  • Chittenden RH (1909) The nutrition of man. Heinemann, London

    Google Scholar 

  • Clarke S, Banfield K (2001) S-adenosylmethionine-dependent methyltransferases. In: Carmel R, Jacobsen DW (eds) Homocysteine in health and disease. Cambridge University Press, Cambridge, pp 63–78

    Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    Article  PubMed  CAS  Google Scholar 

  • Copple IM, Goldring CE, Kitteringham NR, Park BK (2008) The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Toxicology 246:24–33

    Article  PubMed  CAS  Google Scholar 

  • Cutler RG (1985) Peroxide-producing potential of tissues: inverse correlation with longevity of mammalian species. Proc Natl Acad Sci USA 82:4798–4802

    Article  PubMed  CAS  Google Scholar 

  • Dahm CC, Moore K, Murphy MP (2006) Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite. J Biol Chem 281:10056–10065

    Article  PubMed  CAS  Google Scholar 

  • de Magalhães JP, Costa J, Church G (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol A Biol Sci Med Sci 62:149–160

    PubMed  Google Scholar 

  • De AK, Chipalkatti S, Aiyar AS (1983) Some biochemical parameters of ageing in relation to dietary protein. Mech Ageing Dev 21:37–48

    Article  PubMed  CAS  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    PubMed  CAS  Google Scholar 

  • Demetrius L, Legendre S, Harremöes P (2009) Evolutionary entropy: a predictor of body size, metabolic rate and maximal life span. Bull Math Biol 71:800–818

    Article  PubMed  Google Scholar 

  • Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc R Soc B 276:1737–1745

    Article  PubMed  CAS  Google Scholar 

  • Drabkin HJ, Rajbhandary UL (1998) Initiation of protein synthesis with codons other than AUG and amino acids other than methionine. Mol Cell Biol 15:5140–5147

    Google Scholar 

  • Drew B, Phaneuf S, Dirks A, Selman C, Gredilla R, Lezza A, Barja G, Leeuwenburgh C (2003) Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol 284:R474–R480

    CAS  Google Scholar 

  • Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otín M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22:4103–4110

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    Article  PubMed  CAS  Google Scholar 

  • Enesco HE, Kruk P (1981) Dietary restriction reduces fluorescent age pigment accumulation in mice. Exp Gerontol 16:357–361

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Godfrey LV (2008) Electrons, life and the evolution of Earth’s oxygen cycle. Phil Trans R Soc B 363:2705–2716

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein JD (2000) Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost 26:219–225

    Article  PubMed  CAS  Google Scholar 

  • Foksinski M, Rozalski R, Guz J, Ruszowska B, Sztukowska P, Ptwowarski M, Klungland A, Olinski R (2004) Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life pans of different mammalian species. Free Radic Biol Med 37:1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Fontecave M, Atta M, Mulliez E (2004) S-adenosyl methionine: nothing goes to waste. Trends Biochem Sci 29:243–249

    Article  PubMed  CAS  Google Scholar 

  • Forman HJ, Kennedy JA (1974) Role of superoxide radical in mitochondrial dehydrogenase reactions. Biochem Biophys Res Commun 60:1044–1050

    Article  PubMed  CAS  Google Scholar 

  • Foster MW, Stamler JS (2004) New insights into protein S-nitrosylation. Mitochondria as a model system. J Biol Chem 279:25891–25897

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa NK, Yu YM, Young VR (1998) Methionine and cysteine kinetics at different intakes of methionine and cysteine in elderly men and women. Am J Clin Nutr 68:380–388

    PubMed  CAS  Google Scholar 

  • Gamliel A, Afri M, Frimer AA (2008) Determining radical penetration of lipid bilayers with new lipophilic spin traps. Free Radic Biol Med 44:1394–1405

    Article  PubMed  CAS  Google Scholar 

  • Garcia RA, Stipanuk MH (1992) The splanchnic organs, liver and kidney have unique roles in the metabolism of sulfur amino acids and their metabolites in rats. J Nutr 122:1693–1701

    PubMed  CAS  Google Scholar 

  • Genova ML, Ventura B, Giulano G, Bovina C, Formiggini G, Parenti Castelli G, Lenaz G (2001) The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulphur cluster N2. FEBS Lett 505:364–368

    Article  PubMed  CAS  Google Scholar 

  • Gerstbrein B, Stamatas G, Kollias N, Driscoll M (2005) In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4:127–137

    Article  PubMed  CAS  Google Scholar 

  • Giles GI (2009) Redox-controlled transcription factors and gene expression. In: Jacob C, Winyard PG (eds) Redox signaling and regulation in biology and medicine. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, pp 245–270

    Chapter  Google Scholar 

  • Gómez J, Caro P, Naudí A, Portero-Otin M, Pamplona R, Barja G (2007) Effect of 8.5% and 25% caloric restriction on mitochondrial free radical production and oxidative stress in rat liver. Biogerontology 8:555–566

    Article  PubMed  CAS  Google Scholar 

  • Gravina SA, Mieyal JJ (1993) Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry 32:3368–3376

    Article  PubMed  CAS  Google Scholar 

  • Gredilla R, Barja G (2005) Caloric restriction, aging and oxidative stress. Endocrinology 146:3713–3717

    Article  PubMed  CAS  Google Scholar 

  • Gredilla R, Sanz A, López-Torres M, Barja G (2001) Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J 15:1589–1591

    PubMed  CAS  Google Scholar 

  • Gredilla R, Bohr VA, Stevnsner T (2010) Mitochondrial DNA repair and association with aging-an update. Exp Gerontol 45:478–488

    Article  PubMed  CAS  Google Scholar 

  • Hagopian K, Chen Y, Simmons Domer K, Soo Hoo R, Bentley T, McDonald RB, Ramsey JJ (2011) Caloric restriction influences hydrogen peroxide generation in mitochondrial sub-populations from mouse liver. J Bioenerg Biomembr. doi:10.1007/s10863-011.9353-8

  • Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 31:261–272

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, UK

    Google Scholar 

  • Hamilton ML, Guo Z, Fuller CD, Van Remmen H, Ward WF, Austad SN, Troyer DA, Thompson I, Richardson A (2001) A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Res 29:2117–2126

    Article  PubMed  CAS  Google Scholar 

  • Han D, Canali E, Rettori D, Kaplowitz N (2003) Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol Pharmacol 64:1136–1144

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1972) The biological clock: the mitochondria? J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    PubMed  CAS  Google Scholar 

  • Herrero A, Barja G (1997) Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech Ageing Dev 98:95–111

    Article  PubMed  CAS  Google Scholar 

  • Herrero A, Barja G (1998) H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved. Mech Ageing Dev 103:133–146

    Article  PubMed  CAS  Google Scholar 

  • Herrero A, Barja G (1999) 8-Oxodeoxyguanosine levels in heart and brain mitochondrial and nuclear DNA of two mammals and three birds in relation to their different rates of aging. Aging Clin Exp Res 11:294–300

    CAS  Google Scholar 

  • Herrero A, Portero-Otín M, Bellmunt MJ, Pamplona R, Barja G (2001) Effect of the degree of fatty acid unsaturation of rat heart mitochondria on their rates of H2O2 production and lipid and protein oxidative damage. Mech Ageing Dev 122:427–443

    Article  PubMed  CAS  Google Scholar 

  • Hiona A, Sanz A, Kujoth GC, Pamplona R, Seo AY, Hofer T, Someya S, Miyagawa T, Nakayama C, Samhan-Arias AK, Servais S, Barger JL, Portero-Otin M, Tanokura M, Prolla TA, Leeuwenburgh C (2010) Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS One 5:e11468

    Article  PubMed  CAS  Google Scholar 

  • Holman RT (1954) Autoxidation of fats and related substances. In: Holman RT, Lundberg WO, Malkin T (eds) Progress in chemistry of fats and other lipids. Pergamon Press, London, pp 51–98

    Google Scholar 

  • Holmes DJ, Flückiger R, Austad SN (2001) Comparative biology of aging in birds: an update. Exp Gerontol 36:869–883

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ, Faulks SC, Harper JM, Miller RA, Buffenstein R (2006) Extended longevity of wild-derived mice is associated with peroxidation-resistant membranes. Mech Ageing Dev 127:653–657

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    Article  PubMed  CAS  Google Scholar 

  • Institute of Medicine (2000) Dietary reference intakes. Energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academies Press, Washington, DC

    Google Scholar 

  • Ivanetich KM, Bradshaw JJ, Ziman MR (1996) Delta 6-desaturase: improved methodology and analysis of the kinetics in a multi-enzyme system. Biochim Biophys Acta 1292:120–132

    Article  PubMed  Google Scholar 

  • Iwasaki K, Gleiser CA, Masoro EJ, McMahan CA, Seo EJ, Yu BP (1988) Influence of the restriction of individual dietary components on longevity and age-related disease of Fischer rats: the fat component and the mineral component. J Gerontol 43:B13–B21

    PubMed  CAS  Google Scholar 

  • Janssen RJRJ, Nijtmans LG, Van der Heuvel LP, Smeitink JAM (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–515

    Article  PubMed  CAS  Google Scholar 

  • Jobson RW, Nabholz B, Galtier N (2010) An evolutionary genome scan for longevity-related natural selection in mammals. Mol Biol Evol 27:840–847

    Article  PubMed  CAS  Google Scholar 

  • Jung CH, Thomas JA (1996) S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione. Arch Biochem Biophys 335:61–72

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    Article  PubMed  CAS  Google Scholar 

  • Khorakova M, Deĭl Z, Khausman Dzh, Matsek K (1990) Effect of carbohydrate-enriched diet and subsequent food restriction on life prolongation in Fischer 344 male rats. Fiziol Zh 36:16–21

    PubMed  CAS  Google Scholar 

  • Koopman WJ, Nijtmans LG, Dieteren CE, Roestenberg P, Valsecchi F, Smeitink JA, Willems PH (2010) Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 12:1431–1470

    Article  PubMed  CAS  Google Scholar 

  • Ku HH, Sohal RS (1993) Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech Ageing Dev 72:67–76

    Article  PubMed  CAS  Google Scholar 

  • Ku HH, Brunk UT, Sohal RS (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15:621–627

    Article  PubMed  CAS  Google Scholar 

  • Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS (2004) Characterization of superoxide producing sites in isolated brain mitochondria. J Biol Chem 279:4127–4135

    Article  PubMed  CAS  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    Article  PubMed  CAS  Google Scholar 

  • Kujoth GC, Bradshaw PC, Haroon S, Prolla TA (2007) The role of mitochondrial DNA mutations in mammalian aging. PLoS Genet 3:e24

    Article  PubMed  CAS  Google Scholar 

  • Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 368:545–553

    Article  PubMed  CAS  Google Scholar 

  • Laganiere S, Yu BP (1987) Anti-lipoperoxidation action of food restriction. Biochem Biophys Res Comm 145:1185–1191

    Article  PubMed  CAS  Google Scholar 

  • Lambert AJ, Brand MD (2004) Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 279:39414–39420

    Article  PubMed  CAS  Google Scholar 

  • Lambert AJ, Portero-Otin M, Pamplona R, Merry BJ (2004) Effect of aging and caloric restriction on specific markers of protein oxidative damage and membrane peroxidizability in rat liver mitochondria. Mech Ageing Dev 125:529–538

    Article  PubMed  CAS  Google Scholar 

  • Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6:607–618

    Article  PubMed  CAS  Google Scholar 

  • Lambert AJ, Buckingham JA, Boysen HM, Brand MD (2010) Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia. Aging Cell 9:78–91

    Article  PubMed  CAS  Google Scholar 

  • Lane N (2002) Oxygen. The molecule that made the world. Oxford University Press, UK

    Google Scholar 

  • Le Bourg E (2010) Predicting whether dietary restriction would increase longevity in species not tested so far. Ageing Res Rev 9:289–297

    Article  PubMed  Google Scholar 

  • Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JW, Taylor PW, Soran N, Raubenheimer D (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci USA 105:2498–2503

    Article  PubMed  CAS  Google Scholar 

  • Lenaz G, Fato R, Genova ML, Bergamini C, Bianchi C, Biondi A (2006) Mitochondrial complex I: structural and functional aspects. Biochim Biophys Acta 1757:1406–1420

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Masoro EJ, Nelson JF, Strong R, McMahan CA, Richardson A (2003) Genetic mouse models of extended lifespan. Exp Gerontol 38:1353–1364

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Guarente L (2003) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15:241–246

    Article  PubMed  CAS  Google Scholar 

  • Lints FA (1989) The rate of living theory revisited. Gerontology 35:36–57

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Torres M, Perez-Campo R, Rojas C, Cadenas S, Barja G (1993) Maximum life span in vertebrates: relationship with liver antioxidant enzymes, glutathione system, ascorbate, urate, sensitivity to peroxidation, true malondialdehyde, in vivo H2O2, and basal and maximum aerobic capacity. Mech Ageing Dev 70:177–199

    Article  PubMed  CAS  Google Scholar 

  • López-Torres M, Gredilla R, Sanz A, Barja G (2002) Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic Biol Med 32:882–889

    Article  PubMed  Google Scholar 

  • Loschen G, Flohe L, Chance B (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 18:261–264

    Article  PubMed  CAS  Google Scholar 

  • Loschen G, Azzi A, Richter C, Flohe L (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 42:68–72

    Article  PubMed  CAS  Google Scholar 

  • MacCoss MJ, Fukagawa NK, Matthews DE (2001) Measurement of intracellular sulfur amino acid metabolism in humans. Am J Physiol 280:E947–E955

    CAS  Google Scholar 

  • Mair W, Piper MD, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3:e223

    Article  PubMed  CAS  Google Scholar 

  • Marnett LJ, Plastaras JP (2001) Endogenous DNA damage and mutation. Trends Genet 17:214–221

    Article  PubMed  CAS  Google Scholar 

  • Martensson J, Hermansson G (1984) Sulfur amino acid metabolism in juvenile-onset nonketotic and ketotic diabetic patients. Metabolism 33:425–428

    Article  PubMed  CAS  Google Scholar 

  • McCarter R, Masoro EJ, Yu BP (1985) Does food restriction retard aging by reducing metabolic rate? Am J Physiol 248:E488–E490

    PubMed  CAS  Google Scholar 

  • McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659

    Article  PubMed  CAS  Google Scholar 

  • Meléndez-Hevia E, Montero-Gómez N, Montero F (2008) From prebiotic chemistry to cellular metabolism-the chemical evolution of metabolism before Darwinian natural selection. J Theor Biol 252:505–519

    Article  PubMed  CAS  Google Scholar 

  • Melov S, Coskun PE, Wallace DC (1999) Mouse models of mitochondrial disease, oxidative stress, and senescence. Mut Res 434:233–242

    CAS  Google Scholar 

  • Miller RA, Harper JM, Dysko RC, Durkee SJ, Austad SN (2002) Longer life spans and delayed maturation in wild-derived mice. Exp Biol Med 227:500–508

    CAS  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    Article  PubMed  CAS  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591

    Article  PubMed  CAS  Google Scholar 

  • Mitchell TW, Buffenstein R, Hulbert AJ (2007) Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics. Exp Gerontol 42:1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Mitsui A, Hamuro J, Nakamura H, Kondo N, Hirabayashi Y, Ishizaki-Koizumi S, Hirakawa T, Inoue T, Yodoi J (2002) Overexpression of human thioredoxin in transgenic mice controls oxidative stress and lifespan. Antioxid Redox Sign 4:693–696

    Article  CAS  Google Scholar 

  • Moller M, Botti H, Batthyany C, Rubbo H, Radi R, Denicola A (2005) Direct measurement of nitric oxide and oxygen partitioning into liposomes and low density lipoprotein. J Biol Chem 280:8850–8854

    Article  PubMed  CAS  Google Scholar 

  • Moosmann B (2011) Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging. Exp Gerontol 46:164–169

    Article  PubMed  CAS  Google Scholar 

  • Moosmann B, Behl C (2008) Mitochondrially encoded cysteine predicts animal lifespan. Aging Cell 7:32–46

    Article  PubMed  CAS  Google Scholar 

  • Moskovitz J, Bar-Noy S, Williams WM, Requena JR, Berlett BS, Stadtman ER (2001) Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci USA 98:12920–12925

    Article  PubMed  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  PubMed  CAS  Google Scholar 

  • Nabholz B, Glémin S, Galtier N (2008) Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol Biol Evol 25:120–130

    Article  PubMed  CAS  Google Scholar 

  • Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 24:345–376

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Mitsui A, Yodoi J (2002) Thioredoxin overexpression in transgenic mice. Methods Enzymol 347:436–440

    Article  PubMed  CAS  Google Scholar 

  • Naudí A, Caro P, Jové M, Gómez J, Boada J, Ayala V, Portero-Otín M, Barja G, Pamplona R (2007) Methionine restriction decreases endogenous oxidative molecular damage and increases mitochondrial biogenesis and uncoupling protein 4 in rat brain. Rejuvenation Res 10:473–484

    Article  PubMed  Google Scholar 

  • Nelson DL, Cox MM (2005) Lehninger principles of biochemistry. WH Freeman and Company, USA

    Google Scholar 

  • Ohnishi T, Johnson JE Jr, Yano T, Lobrutto R, Widger WR (2005) Thermodynamic and EPR studies of slowly relaxing ubisemiquinone species in the isolated bovine heart complex I. FEBS Lett 579:500–506

    Article  PubMed  CAS  Google Scholar 

  • Okumura S, Suzuki S, Ishikawa Y (2009) New aspects for the treatment of cardiac diseases based on the diversity of functional controls on cardiac muscles: effects of targeted disruption of the type 5 adenylyl cyclase gene. J Pharmacol Sci 109:354–359

    Article  PubMed  CAS  Google Scholar 

  • Olshansky SJ, Rattan SI (2005a) At the heart of aging: is it metabolic rate or stability? Biogerontology 6:291–295

    Article  PubMed  Google Scholar 

  • Olshansky SJ, Rattan SI (2005b) What determines longevity: metabolic rate or stability? Discov Med 5:359–362

    PubMed  CAS  Google Scholar 

  • Orentreich N, Matias JR, DeFelice A, Zimmerman JA (1993) Low methionine ingestion by rats extends life span. J Nutr 123:269–274

    PubMed  CAS  Google Scholar 

  • Palacin M, Fernandez E, Chillaron J, Zorzano A (2001) The amino acid transport system bo,+ and cystinuria. Mol Membr Biol 18:21–26

    PubMed  CAS  Google Scholar 

  • Pamplona R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta 1777:1249–1262

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R (2011) Advanced lipoxidation end-products. Chem Biol Interact 192:14–20

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Barja G (2003) Aging rate, free radical production, and constitutive sensitivity to lipid peroxidation: insights from comparative studies. In: Van Zglinicki T (ed) Biology of aging and its modulation series. Vol. 1. Aging at the molecular level. Kluwer Academic Publisher, New York, pp 47–64

    Google Scholar 

  • Pamplona R, Barja G (2006) Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta 1757:496–508

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Barja G (2007) Highly resistant macromolecular components and low rate of generation of endogenous damage: two key traits of longevity. Ageing Res Rev 6:189–210

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Prat J, Cadenas S, Rojas C, Pérez-Campo R, López Torres M, Barja G (1996) Low fatty acid unsaturation protects against lipid peroxidation in liver mitochondria from long-lived species: the pigeon and human case. Mech Ageing Dev 86:53–66

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Portero-Otin M, Ruiz C, Gredilla R, Herrero A, Barja G (1999) Double bond content of phospholipids and lipid peroxidation negatively correlate with maximum longevity in the heart of mammals. Mech Ageing Dev 112:169–183

    Article  Google Scholar 

  • Pamplona R, Barja G, Portero-Otín M (2002a) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann N Y Acad Sci 959:475–490

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Portero-Otin M, Bellmunt MJ, Gredilla R, Barja G (2002b) Aging increases N epsilon-(carboxymethyl)lysine and caloric restriction decreases N epsilon-(carboxyethyl)lysine and N epsilon-(malondialdehyde)lysine in rat heart mitochondrial proteins. Free Radic Res 36:47–54

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Portero-Otín M, Requena JR, Gredilla R, Barja G (2002c) Oxidative, glycoxidative and lipoxidative damage to rat heart mitochondrial proteins is lower after 4 months of caloric restriction than in age-matched controls. Mech Ageing Dev 123:1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Portero-Otin M, Sanz A, Requena J, Barja G (2004) Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain. Exp Gerontol 39:725–733

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Portero-Otín M, Sanz A, Ayala V, Vasileva E, Barja G (2005) Protein and lipid oxidative damage and complex I content are lower in the brain of budgerigards and canaries than in mice. Relation to aging rate. AGE 27:267–280

    Article  CAS  Google Scholar 

  • Park JW, Choi CH, Kim MS, Chung MH (1996) Oxidative status in senescence accelerated mice. J Gerontol A Biol Sci Med Sci 51:B337–B345

    Article  PubMed  CAS  Google Scholar 

  • Pearl R (1928) The rate of living. University of London Press, London

    Google Scholar 

  • Perez-Campo R, López-Torres M, Cadenas S, Rojas C, Barja G (1998) The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol B 168:149–158

    Article  PubMed  CAS  Google Scholar 

  • Piper MD, Mair W, Partridge L (2005) Counting the calories: the role of specific nutrients in extension of life span by food restriction. J Gerontol A Biol Sci Med Sci 60:549–555

    Article  PubMed  Google Scholar 

  • Pollak N, Dolle C, Ziegler M (2007) The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J 402:205–218

    Article  PubMed  CAS  Google Scholar 

  • Portero-Otin M, Bellmunt MJ, Requena JR, Pamplona R (2003) Protein modification by advanced Maillard adducts can be modulated by dietary polyunsaturated fatty acids. Biochem Soc Trans 31:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Portero-Otín M, Bellmunt MJ, Ruiz MC, Barja G, Pamplona R (2001) Correlation of fatty acid unsaturation of the major liver mitochondrial phospholipid classes in mammals to their maximum life span potential. Lipids 36:491–498

    Article  PubMed  Google Scholar 

  • Portero-Otín M, Requena JR, Bellmunt MJ, Ayala V, Pamplona R (2004) Protein nonenzymatic modifications and proteasome activity in skeletal muscle from the short-lived rat and long-lived pigeon. Exp Gerontol 39:1527–1535

    Article  PubMed  CAS  Google Scholar 

  • Puca AA, Andrew P, Novelli V, Anselmi CV, Somalvico F, Cirillo NA, Chatgilialoglu C, Ferreri C (2008) Fatty acid profile of erythrocyte membranes as possible biomarker of longevity. Rejuvenation Res 11:63–72

    Article  PubMed  CAS  Google Scholar 

  • Raguso CA, Regan MM, Young VR (2000) Cysteine kinetics and oxidation at different intakes of methionine and cystine in young adults. Am J Clin Nutr 71:491–499

    PubMed  CAS  Google Scholar 

  • Rana SK, Sanders TA (1986) Taurine concentrations in the diet, plasma, urine and breast milk of vegans compared with omnivores. Br J Nutr 56:17–27

    Article  PubMed  CAS  Google Scholar 

  • Rao G, Xia E, Nadakavukaren MJ, Richardson A (1990) Effect of dietary restriction on the age-dependent changes in the expression of antioxidant enzymes in rat liver. J Nutr 120:602–609

    PubMed  CAS  Google Scholar 

  • Raubenheimer D, Simpson SJ (1997) Integrative models of nutrient balancing: application to insects and vertebrates. Nutr Res Rev 10:151–179

    Article  PubMed  CAS  Google Scholar 

  • Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 8:1302–1307

    PubMed  CAS  Google Scholar 

  • Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    Article  PubMed  CAS  Google Scholar 

  • Ross MH (1976) Nutrition and longevity in experimental animals. Curr Concepts Nutr 4:43–57

    PubMed  CAS  Google Scholar 

  • Ruan H, Tang XD, Chen ML, Joiner ML, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu CF, Hoshi T (2002) High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 99:2748–2753

    Article  PubMed  CAS  Google Scholar 

  • Ruiz MC, Ayala V, Portero-Otín M, Requena JR, Barja G, Pamplona R (2005) Protein methionine content and MDA-lysine protein adducts are inversely related to maximum life span in the heart of mammals. Mech Ageing Dev 126:1106–1114

    Article  PubMed  CAS  Google Scholar 

  • Salway KD, Page MM, Faure PA, Burness G, Stuart JA (2010) Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species. Age (Dordr). doi:10.1007/s11357-010-9157-5

  • Samuels DC (2005) Life span is related to the free energy of mitochondrial DNA. Mech Ageing Dev 126:1123–1129

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Roman I, Gomez J, Naudi A, Ayala V, Portero-Otín M, Lopez-Torres M, Pamplona R, Barja G (2010) The β-blocker atenolol lowers the longevity-related degree of fatty acid unsaturation, decreases protein oxidative damage, and increases extracellular signal-regulated kinase signaling in the heart of C57BL/6 mice. Rejuvenation Res 13:683–693

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Caro P, Barja G (2004) Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J Bioenerg Biomembr 36:545–552

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Caro P, Ibañez J, Gómez J, Gredilla R, Barja G (2005a) Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. J Bioenerg Biomembr 37:83–90

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Gredilla R, Pamplona R, Portero-Otín M, Vara E, Tresguerres JA, Barja G (2005b) Effect of insulin and growth hormone on rat heart and liver oxidative stress in control and caloric restricted animals. Biogerontology 6:15–26

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G (2006a) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 20:1064–1073

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Caro P, Sanchez JG, Barja G (2006b) Effect of lipid restriction on mitochondrial free radical production and oxidative DNA damage. Ann N Y Acad Sci 1067:200–209

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Gómez J, Caro P, Barja G (2006c) Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. J Bioenerg Biomembr 38:327–333

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Pamplona R, Barja G (2006d) Is the mitochondrial free radical theory of aging intact? Antioxid Redox Signal 8:582–599

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Barja G, Pamplona R, Leeuwenburgh C (2009) Free radicals and mammalian aging. In: Jacob C, Winyard PG (eds) Redox signaling and regulation in biology and medicine. Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp 433–472

    Chapter  Google Scholar 

  • Sanz A, Soikkeli M, Portero-Otín M, Wilson A, Kemppainen E, McIlroy G, Ellilä S, Kemppainen KK, Tuomela T, Lakanmaa M, Kiviranta E, Stefanatos R, Dufour E, Hutz B, Naudí A, Jové M, Zeb A, Vartiainen S, Matsuno-Yagi A, Yagi T, Rustin P, Pamplona R, Jacobs HT (2010a) Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction. Proc Natl Acad Sci USA 107:9105–9110

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Fernández-Ayala DJ, Stefanatos RK, Jacobs HT (2010b) Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging (Albany NY) 2:200–203

    CAS  Google Scholar 

  • Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465

    Article  PubMed  CAS  Google Scholar 

  • Scheffler IE (1999) Mitochondria. Wiley-Liss, USA

    Book  Google Scholar 

  • Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y (1999) Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274:19745–19751

    Article  PubMed  CAS  Google Scholar 

  • Sherman PW, Jarvis JUM (2002) Extraordinary life spans of naked mole-rats (Heterocephalus glaber). J Zool (Lond.) 258:307–311

    Article  Google Scholar 

  • Shimokawa I, Higami Y, Yu BP, Masoro EJ, Ikeda T (1996) Influence of dietary components on occurrence of and mortality due to neoplasms in male F344 rats. Aging (Milano) 8:254–262

    CAS  Google Scholar 

  • Simpson SJ, Raubenheimer D (2005) Obesity: the protein leverage hypothesis. Obes Rev 6:133–142

    Article  PubMed  CAS  Google Scholar 

  • Simpson SJ, Raubenheimer D (2009) Macronutrient balance and lifespan. Aging (Albany NY) 1:875–880

    CAS  Google Scholar 

  • Simpson SJ, Batley R, Raubenheimer D (2003) Geometric analysis of macronutrient intake in humans: the power of protein? Appetite 41:123–140

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Guarente L (2006) Unlocking the secrets of longevity genes. Sci Am 294:48–57

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Svensson I, Brunk UT (1990) Hydrogen peroxide production by liver mitochondria in different species. Mech Ageing Dev 53:209–215

    Article  PubMed  CAS  Google Scholar 

  • Speakman J (2005) Correlations between physiology and lifespan—two widely ignored problems with comparative studies. Aging Cell 4:167–175

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER, Moskovitz J, Levine RL (2003) Oxidation of methionine residues in proteins: biological consequences. Antioxid Redox Sign 5:577–582

    Article  CAS  Google Scholar 

  • Stefanatos R, Sanz A (2011) Mitochondrial complex I: a central regulator of the aging process. Cell Cycle 10:1528–1532

    Article  PubMed  Google Scholar 

  • Stipanuk MH (1999) Homocysteine, cysteine, and taurine. In: Shils ME, Olson JA, Shike M, Ross AC (eds) Modern nutrition in health and disease, 9th edn. Williams & Wilkins, Baltimore, pp 543–558

    Google Scholar 

  • Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  PubMed  CAS  Google Scholar 

  • Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA (2004) Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 18:595–597

    PubMed  CAS  Google Scholar 

  • Taylor ER, Hurrell F, Shannon RJ, Lin TK, Hirst J, Murphy MP (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278:19603–19610

    Article  PubMed  CAS  Google Scholar 

  • Terman A, Brunk UT (2004) Lipofuscin. Int J Biochem Cell Biol 36:1400–1404

    Article  PubMed  CAS  Google Scholar 

  • Thorpe SR, Baynes JW (2003) Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25:275–281

    Article  PubMed  CAS  Google Scholar 

  • Toime LJ, Brand MD (2010) Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radic Biol Med 49:606–611

    Article  PubMed  CAS  Google Scholar 

  • Treberg JR, Brand MD (2011) A model of the proton translocation mechanism of complex I. J Biol Chem 286:17579–17584

    Article  PubMed  CAS  Google Scholar 

  • Treberg JR, Quinlan CL, Brand MD (2011) Evidence for two sites of superoxide production by mitochondrial NADH-Q oxidoreductase (complex I). J Biol Chem. doi:10.1074/jbc.M111.252502

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wiborn R, Tornell J, Jacobs HT, Larsson NG (2004) Premature aging in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    Article  PubMed  CAS  Google Scholar 

  • Vance DE, Vance JE (1996) Biochemistry of lipids, lipoproteins and membranes. Elsevier Science BV, Amsterdam, pp 1–553

    Google Scholar 

  • Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA 101:2040–2045

    Article  PubMed  CAS  Google Scholar 

  • Walker G, Houthoofd K, Vanfleteren JR, Gems D (2005) Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mech Ageing Dev 126:929–937

    Article  PubMed  CAS  Google Scholar 

  • Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27:467–473

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Wonq A, Cortopassi G (1997) The rate of mitochondrial mutagenesis is faster in mice than in humans. Mut Res 377:157–166

    Article  CAS  Google Scholar 

  • Xu P, Sauve AA (2010) Vitamin B3, the nicotinamide adenine dinucleotides and aging. Mech Ageing Dev 131:287–298

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Vatner DE, O’Connor JP, Ivessa A, Ge H, Chen W, Hirotani S, Ishikawa Y, Sadoshima J, Vatner SF (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130:247–258

    Article  PubMed  CAS  Google Scholar 

  • Yang SY, Hoy M, Fuller B, Sales KM, Seifalian AM, Winslet MC (2010) Pretreatment with insulin-like growth factor I protects skeletal muscle cells against oxidative damage via PI3K/Akt and ERK1/2 MAPK pathways. Lab Invest 90:391–401

    Article  PubMed  CAS  Google Scholar 

  • Yeagle P (1993) The membranes of cells. Academic Press, San Diego, pp 1–349

    Google Scholar 

  • Yen K, Mastitis JW, Mobbs CV (2004) Lifespan is not determined by metabolic rate: evidence from fishes and C. elegans. Exp Gerontol 39:3947–3949

    Article  Google Scholar 

  • Yu BP (2005) Membrane alteration as a basis of aging and the protective effects of calorie restriction. Mech Ageing Dev 126:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JA, Malloy V, Krajcik R, Orentreich N (2003) Nutritional control of aging. Exp Gerontol 38:47–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous reviewers for criticisms and suggestions, which improved the manuscript. Investigations of the author of this review have been supported in part by I+D grants from the Spanish Ministry of Science and Innovation (BFU2008-00335/BFI), and BSCH-UCM (2009–2010) to G.B; and grants from the Spanish Ministry of Education and Science (BFU2009-11879/BFI), the Spanish Ministry of Health (RD06/0013/0012), and the Generalitat of Catalunya (2009SGR735) to R.P. No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reinald Pamplona or Gustavo Barja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pamplona, R., Barja, G. An evolutionary comparative scan for longevity-related oxidative stress resistance mechanisms in homeotherms. Biogerontology 12, 409–435 (2011). https://doi.org/10.1007/s10522-011-9348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-011-9348-1

Keywords

Navigation