Skip to main content
Log in

Implication of kinetic Alfvén waves to magnetic field turbulence spectra: Earth’s magnetosheath

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In the present paper, we investigate the power-law behaviour of the magnetic field spectra in the Earth’s magnetosheath region using Cluster spacecraft data under solar minimum condition. The power spectral density of the magnetic field data and spectral slopes at various frequencies are analysed. Propagation angle, \(\theta_{kB}\), and compressibility, \(R_{\|}\), are used to test the nature of turbulent fluctuations. The magnetic field spectra have the spectral slopes, \(\alpha\), between −1.5 to 0 down to spatial scales of \(20\rho_{i}\) (where \(\rho_{i}\) is ion gyroradius), and show clear evidence of a transition to steeper spectra for small scales with a second power-law, having \(\alpha\) between −2.6 to −1.8. At low frequencies, \(f_{sc} <0.3 f_{ci}\) (where \(f_{ci}\) is ion gyro-frequency), \(\theta_{kB}\sim 90^{ \circ} \) to the mean magnetic field, \(B_{0}\), and \(R_{\|}\) shows a broad distribution, \(0.1 \le R_{\|} \le 0.9\). On the other hand at \(f_{sc} >10 f_{ci}\), \(\theta_{kB}\) exhibits a broad range, \(30^{ \circ} \le \theta_{kB} \le 90^{ \circ} \), while \(R_{\|}\) has a small variation: \(0.2 \le R_{\|} \le 0.5\). We conjecture that at high frequencies, the perpendicularly propagating Alfvén waves could partly explain the statistical analysis of spectra. To support our prediction of kinetic Alfvén wave dominated spectral slope behaviour at high frequency, we also present a theoretical model and simulate the magnetic field turbulence spectra due to nonlinear evolution of kinetic Alfvén waves. The present study also shows the analogy between the observational and simulated spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balogh, A., Carr, C.M., Acuna, M.H., Dunlop, M.W., Beek, T.J., Brown, P., et al.: Ann. Geophys. 19, 1207 (2001)

    Article  ADS  Google Scholar 

  • Bavassano Cattaneo, M.B., Moreno, G., Russo, G., Richardson, J.D.: J. Geophys. Res. 105, 23141–23152 (2000)

    Article  ADS  Google Scholar 

  • Boldyrev, S., Horaites, K., Xia, Q., Perez, J.C.: Astrophys. J. 777, 41 (2013)

    Article  ADS  Google Scholar 

  • Breuillard, H., Matteini, L., Argall, M.R., Sahraoui, F., Andriopoulou, M., Le Contel, O., et al.: Astrophys. J. 859, 127 (2018)

    Article  ADS  Google Scholar 

  • Bruno, R., Carbone, V.:: Living Rev. Sol. Phys. 2, 4 (2005)

    Article  ADS  Google Scholar 

  • Carr, C., Brown, P., Alconcel, L.-N., et al.: User Guide to the FGM Measurements in the Cluster Active Archive (2014)

    Google Scholar 

  • Chen, C.H.K., Leung, L., Boldyrev, S., Maruca, B.A., Bale, S.D.: Geophys. Res. Lett. 28, 41 (2014)

    Google Scholar 

  • Chhiber, R., Chasapis, A., Bandyopadhyay, R., Parashar, T.N., Matthaeus, W.H., Maruca, B.A., Moore, T.E., Burch, J.L., Torbert, R.B., Russelll, C.T., Le Contel, O., et al.: J. Geophys. Res. Space Phys. 123, 12 (2018)

    Google Scholar 

  • Décréau, P.M.E., Fergeau, P., Krannosels’kikh, V., et al.: Space Sci. Rev. 79, 157–193 (1997)

    Article  ADS  Google Scholar 

  • Dwivedi, N.K., Sharma, R.P.: Phys. Plasmas 20, 042308 (2013)

    Article  ADS  Google Scholar 

  • Dwivedi, N.K., Batra, K., Sharma, R.P.: J. Geophys. Res. 117, A07201 (2012)

    Article  ADS  Google Scholar 

  • Dwivedi, N.K., Sharma, R.P., Batra, K.: Astrophys. Space Sci. 343, 19–26 (2013)

    Article  ADS  Google Scholar 

  • Dwivedi, N.K., Schmid, D., Narita, Y., et al.: Earth Planets Space 67, 137 (2015)

    Article  ADS  Google Scholar 

  • Franci, L., Landi, S., Matteini, L., Verdini, A., Hellinger, P.: Astrophys. J. 833, 91 (2016)

    Article  ADS  Google Scholar 

  • Franci, L., Landi, S., Verdini, A., Matteini, L., Hellinger, P.: Astrophys. J. 853, 26 (2018)

    Article  ADS  Google Scholar 

  • Gosling, J.T., Thomsen, M.F., Bame, S.J.: J. Geophys. Res. 94, 10011–10025 (1989)

    Article  ADS  Google Scholar 

  • Groselj, D., Mallet, A., Loureiro, N.F., Jenko, F.: Phys. Rev. Lett. 120, 105101 (2018)

    Article  ADS  Google Scholar 

  • Hadid, L.Z., Sahraoui, F., Kiyani, K.H., Retinò, A., Modolo, R., Canu, P., Masters, A., Dougherty, M.K.: Astrophys. J. Lett. 813, L29 (2015)

    Article  ADS  Google Scholar 

  • Huang, S.Y., Sahraoui, F., Deng, X.H., He, J.S., Yuan, Z.G., Zhou, M., Pang, Y., Fu, H.S.: Astrophys. J. Lett. 789, L28 (2014)

    Article  ADS  Google Scholar 

  • Huang, S.Y., Hadid, L.Z., Sahraoui, F., Yuan, Z.G., Deng, X.H.: Astrophys. J. Lett. 836, L10 (2017)

    Article  ADS  Google Scholar 

  • Kairmabadi, H., Roytershteyn, V., Wan, M., et al.: Phys. Plasmas 20, 012303 (2013)

    Article  ADS  Google Scholar 

  • Kovacs, P., Facsko, G., Dandouras, I.: Planet. Space Sci. 92, 24 (2014)

    Article  ADS  Google Scholar 

  • Kumar, S., Sharma, R.P., Singh, H.D.: Phys. Plasmas 16, 072903 (2009)

    Article  ADS  Google Scholar 

  • Leamon, R.J., Smith, C.W., Ness, N.F., et al.: J. Geophys. Res. 104, 22331 (1999)

    Article  ADS  Google Scholar 

  • Matteini, L., Alexandrova, O., Chen, C.H.K., Lacombe, C.: Mon. Not. R. Astron. Soc. 466, 945–951 (2016)

    Article  ADS  Google Scholar 

  • McPherron, R.L., Russel, C.T., Coleman, P.J.: Space Sci. Rev. 13, 411 (1972)

    Article  ADS  Google Scholar 

  • Remé, H., Aoustin, C., Bosqued, J.M., Dandouras, I., et al.: Ann. Geophys. 19, 1303 (2001)

    Article  ADS  Google Scholar 

  • Robert, P., Cornilleau-Wehhrlin, N., Piberne, R.: Geosci. Instrum. Method. Data Syst. 3, 153 (2014)

    Article  ADS  Google Scholar 

  • Sharma, R.P., Modi, K.V.: Phys. Plasmas 20, 08230 (2013)

    Google Scholar 

  • Sharma, R.P., Singh, H.D.: J. Astrophys. Astron. 29, 239 (2008)

    Article  ADS  Google Scholar 

  • Shukla, P.K., Stenflo, L.: Phys. Plasmas 6, 4120–4122 (1999)

    Article  ADS  Google Scholar 

  • Shukla, P.K., Stenflo, L.: Phys. Plasmas 7, 2738–2739 (2000)

    Article  ADS  Google Scholar 

  • Tao, C., Sahraoui, F., Fontaine, D., de Patoul, J., Chust, T., Kasahara, S., Retinò, A.: J. Geophys. Res. 120, 2477–2493 (2015)

    Article  Google Scholar 

  • Taylor, G.I.: Proc. R. Soc. Lond. A 164, 476 (1938)

    Article  ADS  Google Scholar 

  • Uritsky, V.M., Slavin, J.A., Khazanov, G.V., Donovan, E.F., Boardsen, S.A., Anderson, B.J., Korth, H.: J. Geophys. Res. 116, A09236 (2011)

    Article  ADS  Google Scholar 

  • von Papen, M.V., Saur, J., Alexandrova, O.: J. Geophys. Res. 119, 2797 (2013)

    Article  Google Scholar 

  • Vörös, Z., Zhang, T.L., Leubner, M.P., et al.: J. Geophys. Res. 113, E00B21 (2008)

    Article  Google Scholar 

  • Welch, P.D.: IEEE Trans. Audio Electroacoust. 15, 7073 (1967)

    Article  Google Scholar 

  • Zaqarashvili, T.V., Khodachenko, M.L., Rucker, H.O.: Astron. Astrophys. 529, A82 (2011)

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Khodachenko, M.L., Soler, R.: Astron. Astrophys. 549, A113 (2013)

    Article  ADS  Google Scholar 

  • Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., et al.: Space Sci. Rev. 156, 89 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the entire members of Cluster fluxgate magnetometer team, and Cluster Science Archive for providing the data used in the present work. The magnetosheath data set was compiled in the frame of the STORM project (grant agreement No. 313038). The Austrian Science Foundation (FWF) (Project I2939-N27), Austrian Agency for International Cooperation in Education and Research Project No. IN 05/2018, and Austrian Academy of Sciences have supported this work. MLK acknowledges the support from the project S11606-N16 and partial support by the Ministry of Education and Science of Russian Federation (Grant No. RFMEFI61617X0084). RPS thanks DST and ISRO for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Dwivedi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, N.K., Kumar, S., Kovacs, P. et al. Implication of kinetic Alfvén waves to magnetic field turbulence spectra: Earth’s magnetosheath. Astrophys Space Sci 364, 101 (2019). https://doi.org/10.1007/s10509-019-3592-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-019-3592-2

Keywords

Navigation