Skip to main content
Log in

Protective effect of berberine against myocardial ischemia reperfusion injury: role of Notch1/Hes1-PTEN/Akt signaling

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Berberine (BBR) confers cardioprotective effect against myocardial ischemia reperfusion injury (MI/RI). Activation of Notch1/Hairy and enhancer of split 1 (Hes1) signaling also reduces MI/RI. We hypothesize that BBR may protect against MI/RI by modulating Notch1/Hes1-Phosphatase and tensin homolog deleted on chromosome ten (PTEN)/Akt signaling. In this study, male Sprague–Dawley rats were exposed to BBR treatment (200 mg/kg/d) for 2 weeks and then subjected to MI/RI. BBR significantly improved cardiac function recovery and decreased myocardial apoptosis, infarct size, serum creatine kinase and lactate dehydrogenase levels. Furthermore, in cultured H9c2 cardiomyocytes, BBR (50 μmol/L) attenuated simulated ischemia/reperfusion-induced myocardial apoptosis. Both in vivo and in vitro study showed that BBR treatment up-regulates Notch1 intracellular domain, Hes1, Bcl-2 expression and p-Akt/Akt ratio, down-regulates Bax Caspase-3 and cleaved Caspase-3 expression. However, the anti-apoptotic effect conferred by BBR was blocked by Notch1 siRNA, Hes1 siRNA or LY294002 (the specific inhibitor of Akt signaling) in the cultured cardiomyocytes. In summary, our results demonstrate that BBR treatment attenuates MI/RI by modulating Notch1/Hes1-PTEN/Akt signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Investig 123(1):92–100. doi:10.1172/jci62874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. New Engl J Med 357(11):1121–1135. doi:10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  3. Remppis A, Bea F, Greten HJ, Buttler A, Wang H, Zhou Q, Preusch MR, Enk R, Ehehalt R, Katus H, Blessing E (2010) Rhizoma Coptidis inhibits LPS-induced MCP-1/CCL2 production in murine macrophages via an AP-1 and NFkappaB-dependent pathway. Mediat Inflamm 2010:194896. doi:10.1155/2010/194896

    Article  Google Scholar 

  4. Liu F, Liang HL, Xu KH, Tong LL, Tang B (2007) Supramolecular interaction of ethylenediamine linked beta-cyclodextrin dimer and berberine hydrochloride by spectrofluorimetry and its analytical application. Talanta 74(1):140–145. doi:10.1016/j.talanta.2007.05.048

    Article  CAS  PubMed  Google Scholar 

  5. Chen K, Li G, Geng F, Zhang Z, Li J, Yang M, Dong L, Gao F (2014) Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats. Apoptosis Int J Program Cell Death 19(6):946–957. doi:10.1007/s10495-014-0977-0

    Article  CAS  Google Scholar 

  6. Chang W, Zhang M, Li J, Meng Z, Xiao D, Wei S, Chen L, Wang C, Hatch GM (2012) Berberine attenuates ischemia-reperfusion injury via regulation of adenosine-5′-monophosphate kinase activity in both non-ischemic and ischemic areas of the rat heart. Cardiovas Drugs Therapy 26(6):467–478. doi:10.1007/s10557-012-6422-0

    Article  CAS  Google Scholar 

  7. Zeng XH, Zeng XJ, Li YY (2003) Efficacy and safety of berberine for congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 92(2):173–176

    Article  CAS  PubMed  Google Scholar 

  8. Piazzi G, Bazzoli F, Ricciardiello L (2012) Epigenetic silencing of Notch signaling in gastrointestinal cancers. Cell Cycle 11(23):4323–4327. doi:10.4161/cc.22388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Marignol L, Rivera-Figueroa K, Lynch T, Hollywood D (2013) Hypoxia, notch signalling, and prostate cancer. Nat Rev Urol 10(7):405–413. doi:10.1038/nrurol.2013.110

    Article  CAS  PubMed  Google Scholar 

  10. Nakagawa O, McFadden DG, Nakagawa M, Yanagisawa H, Hu T, Srivastava D, Olson EN (2000) Members of the HRT family of basic helix-loop-helix proteins act as transcriptional repressors downstream of Notch signaling. Proc Natl Acad Sci USA 97(25):13655–13660. doi:10.1073/pnas.250485597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science (New York, NY) 275(5308):1943–1947

    Article  CAS  Google Scholar 

  12. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15(4):356–362. doi:10.1038/ng0497-356

    Article  CAS  PubMed  Google Scholar 

  13. Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133(3):403–414. doi:10.1016/j.cell.2008.04.013

    Article  CAS  PubMed  Google Scholar 

  14. Downward J (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15(2):177–182

    Article  CAS  PubMed  Google Scholar 

  15. Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z, Han H, Gao E, Qu Y, Tao L (2013) Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol 108(5):373. doi:10.1007/s00395-013-0373-x

    Article  PubMed  Google Scholar 

  16. Park SH, Sung JH, Chung N (2014) Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2. Mol Cell Biochem 394(1–2):209–215. doi:10.1007/s11010-014-2096-1

    Article  CAS  PubMed  Google Scholar 

  17. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55(8):2256–2264. doi:10.2337/db06-0006

    Article  CAS  PubMed  Google Scholar 

  18. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD (2004) Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 10(12):1344–1351. doi:10.1038/nm1135

    Article  CAS  PubMed  Google Scholar 

  19. Wang C, Li J, Lv X, Zhang M, Song Y, Chen L, Liu Y (2009) Ameliorative effect of berberine on endothelial dysfunction in diabetic rats induced by high-fat diet and streptozotocin. Eur J Pharmacol 620(1–3):131–137. doi:10.1016/j.ejphar.2009.07.027

    Article  CAS  PubMed  Google Scholar 

  20. Cui G, Qin X, Zhang Y, Gong Z, Ge B, Zang YQ (2009) Berberine differentially modulates the activities of ERK, p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation in type 1 diabetic mice. J Biol Chem 284(41):28420–28429. doi:10.1074/jbc.M109.012674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Yin J, Hu R, Chen M, Tang J, Li F, Yang Y, Chen J (2002) Effects of berberine on glucose metabolism in vitro. Metab Clin Exp 51(11):1439–1443

    Article  CAS  PubMed  Google Scholar 

  22. Yu L, Sun Y, Cheng L, Jin Z, Yang Y, Zhai M, Pei H, Wang X, Zhang H, Meng Q, Zhang Y, Yu S, Duan W (2014) Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: role of SIRT1. J Pineal Res 57(2):228–238. doi:10.1111/jpi.12161

    Article  CAS  PubMed  Google Scholar 

  23. Oshima Y, Ouchi N, Sato K, Izumiya Y, Pimentel DR, Walsh K (2008) Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation 117(24):3099–3108. doi:10.1161/circulationaha.108.767673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Song CL, Liu B, Diao HY, Shi YF, Li YX, Zhang JC, Lu Y, Wang G, Liu J, Yu YP, Guo ZY, Wang JP, Zhao Z, Liu JG, Liu YH, Liu ZX, Cai D, Li Q (2014) The protective effect of microRNA-320 on left ventricular remodeling after myocardial ischemia-reperfusion injury in the rat model. Int J Mol Sci 15(10):17442–17456. doi:10.3390/ijms151017442

    Article  PubMed Central  PubMed  Google Scholar 

  25. Yang Y, Duan W, Jin Z, Yi W, Yan J, Zhang S, Wang N, Liang Z, Li Y, Chen W, Yi D, Yu S (2013) JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J Pineal Res 55(3):275–286. doi:10.1111/jpi.12070

    Article  CAS  PubMed  Google Scholar 

  26. Duan W, Yang Y, Yi W, Yan J, Liang Z, Wang N, Li Y, Chen W, Yu S, Jin Z, Yi D (2013) New role of JAK2/STAT3 signaling in endothelial cell oxidative stress injury and protective effect of melatonin. PLoS One 8(3):e57941. doi:10.1371/journal.pone.0057941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yang Y, Duan W, Liang Z, Yi W, Yan J, Wang N, Li Y, Chen W, Yu S, Jin Z, Yi D (2013) Curcumin attenuates endothelial cell oxidative stress injury through Notch signaling inhibition. Cell Signal 25(3):615–629. doi:10.1016/j.cellsig.2012.11.025

    Article  CAS  PubMed  Google Scholar 

  28. Song JQ, Teng X, Cai Y, Tang CS, Qi YF (2009) Activation of Akt/GSK-3beta signaling pathway is involved in intermedin(1-53) protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis Int J Program Cell Death 14(9):1061–1069. doi:10.1007/s10495-009-0382-2

    Article  CAS  Google Scholar 

  29. Gao F, Tao L, Yan W, Gao E, Liu HR, Lopez BL, Christopher TA, Ma XL (2004) Early anti-apoptosis treatment reduces myocardial infarct size after a prolonged reperfusion. Apoptosis Int J Program Cell Death 9(5):553–559. doi:10.1023/B:APPT.0000038035.75845.ab

    Article  CAS  Google Scholar 

  30. Xing W, Yan W, Fu F, Jin Y, Ji L, Liu W, Wang L, Lv A, Duan Y, Zhang J, Zhang H, Gao F (2009) Insulin inhibits myocardial ischemia-induced apoptosis and alleviates chronic adverse changes in post-ischemic cardiac structure and function. Apoptosis Int J Program Cell Death 14(9):1050–1060. doi:10.1007/s10495-009-0378-y

    Article  CAS  Google Scholar 

  31. Zhang T, Yang S, Du J (2014) Protective Effects of Berberine on Isoproterenol-Induced Acute Myocardial Ischemia in Rats through Regulating HMGB1-TLR4 Axis. Evid-Based Complement Altern Med 2014:849783. doi:10.1155/2014/849783

    Google Scholar 

  32. Kratsios P, Catela C, Salimova E, Huth M, Berno V, Rosenthal N, Mourkioti F (2010) Distinct roles for cell-autonomous Notch signaling in cardiomyocytes of the embryonic and adult heart. Circ Res 106(3):559–572. doi:10.1161/circresaha.109.203034

    Article  CAS  PubMed  Google Scholar 

  33. Miele L (2006) Notch signaling. Clin Cancer Res 12(4):1074–1079. doi:10.1158/1078-0432.ccr-05-2570

    Article  CAS  PubMed  Google Scholar 

  34. Niessen K, Karsan A (2007) Notch signaling in the developing cardiovascular system. Am J Physiol Cell Physiol 293(1):C1–C11. doi:10.1152/ajpcell.00415.2006

    Article  CAS  PubMed  Google Scholar 

  35. High FA, Epstein JA (2008) The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 9(1):49–61. doi:10.1038/nrg2279

    Article  CAS  PubMed  Google Scholar 

  36. Campa VM, Gutierrez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183(1):129–141. doi:10.1083/jcb.200806104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Collesi C, Zentilin L, Sinagra G, Giacca M (2008) Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol 183(1):117–128. doi:10.1083/jcb.200806091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K, Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E, Sussman MA (2008) Activation of Notch-mediated protective signaling in the myocardium. Circ Res 102(9):1025–1035. doi:10.1161/circresaha.107.164749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Dror V, Nguyen V, Walia P, Kalynyak TB, Hill JA, Johnson JD (2007) Notch signalling suppresses apoptosis in adult human and mouse pancreatic islet cells. Diabetologia 50(12):2504–2515. doi:10.1007/s00125-007-0835-5

    Article  CAS  PubMed  Google Scholar 

  40. Zhou XL, Wan L, Xu QR, Zhao Y, Liu JC (2013) Notch signaling activation contributes to cardioprotection provided by ischemic preconditioning and postconditioning. J Transl Med 11:251. doi:10.1186/1479-5876-11-251

    Article  PubMed Central  PubMed  Google Scholar 

  41. Luo HR, Hattori H, Hossain MA, Hester L, Huang Y, Lee-Kwon W, Donowitz M, Nagata E, Snyder SH (2003) Akt as a mediator of cell death. Proc Natl Acad Sci USA 100(20):11712–11717. doi:10.1073/pnas.1634990100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Qian J, Ling S, Castillo AC, Long B, Birnbaum Y, Ye Y (2012) Regulation of phosphatase and tensin homolog on chromosome 10 in response to hypoxia. Am J Physiol Heart Circ Physiol 302(9):H1806–H1817. doi:10.1152/ajpheart.00929.2011

    Article  CAS  PubMed  Google Scholar 

  43. Zhou XL, Wan L, Liu JC (2013) Activated Notch1 reduces myocardial ischemia reperfusion injury in vitro during ischemic postconditioning by crosstalk with the RISK signaling pathway. Chin Med J 126(23):4545–4551

    CAS  PubMed  Google Scholar 

  44. Hsu YY, Chen CS, Wu SN, Jong YJ, Lo YC (2012) Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells. Eur J Pharmaceut Sci 46(5):415–425. doi:10.1016/j.ejps.2012.03.004

    Article  CAS  Google Scholar 

  45. Xiao M, Men LN, Xu MG, Wang GB, Lv HT, Liu C (2014) Berberine protects endothelial progenitor cell from damage of TNF-alpha via the PI3K/AKT/eNOS signaling pathway. Eur J Pharmacol 743:11–16. doi:10.1016/j.ejphar.2014.09.024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work presented here was carried out in collaboration between all authors. Shiqiang Yu and Weixun Duan defined the research theme and revised the manuscript critically. Liming Yu, Feijiang Li and Guolong Zhao designed methods and experiments, carried out the laboratory experiments and wrote the paper. Yang Yang, Zhenxiao Jin, Mengen Zhai, Wenjun Yu, Lin Zhao and Wensheng Chen collected and analyzed the data, interpreted the results. The authors thank Buying Li, Xiaowu Wang and Yanyan Ma, Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, for technical support in western blot and cell culture. This study was supported by grants from the National Natural Science Foundation of China (81470415, 81470411, 81270170) and the Natural Science Foundation of Shannxi Province (2014JM4106).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weixun Duan or Shiqiang Yu.

Additional information

Liming Yu, Feijiang Li and Guolong Zhao contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Li, F., Zhao, G. et al. Protective effect of berberine against myocardial ischemia reperfusion injury: role of Notch1/Hes1-PTEN/Akt signaling. Apoptosis 20, 796–810 (2015). https://doi.org/10.1007/s10495-015-1122-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1122-4

Keywords

Navigation