Skip to main content
Log in

A proteomics approach for the analysis of hemolymph proteins involved in the immediate defense response of the soft tick, Ornithodoros savignyi, when challenged with Candida albicans

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

A proteomics approach was employed to identify proteins secreted into the hemolymph of Ornithodorus savignyi ticks 2 h after immune-challenge with the yeast, Candida albicans. Profiling of the proteins present in hemolymph of unchallenged ticks versus ticks challenged with heat-killed yeast revealed five proteins to be differentially expressed. The modulated protein spots were subjected to tandem mass spectrometry (MS/MS) analysis, but could not be positively identified. These proteins can be assigned to the immune response as they were not induced after aseptic injury. In an attempt to identify hemolymph proteins that recognize and bind to yeast cells, hemolymph obtained from both unchallenged and challenged ticks was incubated with C. albicans. Elution of the bound proteins followed by SDS–PAGE analysis indicated that three proteins (97, 88 and 26 kDa) present in both unchallenged and challenged hemolymph samples bind to yeast cells. The constant presence of these three proteins in tick hemolymph leads us to believe that they may be involved in non-self recognition and participate in yeast clearance from tick plasma. The analyzed yeast-binding proteins could also not be positively identified, suggesting that all the tick immune proteins investigated in this study are novel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333. doi:10.1002/elps.2002305844

    Article  CAS  PubMed  Google Scholar 

  • De Morais Guedes S, Vitorino R, Torner K, Domingues MRM, Correia AJF, Amado F, Domingues P (2003) Drosophila melanogaster larval hemolymph protein mapping. Biochem Biophys Res Commun 312:545–554. doi:10.1016/j.bbrc.2003.10.156

    Article  Google Scholar 

  • Estrada-Pena A, Jongejan F (1999) Ticks feeding on humans: a review of records on human-biting Ixodidea with special reference to pathogen transmission. Exp Appl Acarol 23:685–715. doi:10.1023/A:1006241108739

    Article  CAS  PubMed  Google Scholar 

  • Francischetti IBM, Meng Z, Mans BJ, Guderra N, Hall M, Veenstra TD, Pham VM, Kotsyfakis M, Ribeiro JMC (2008a) An insight into the salivary transcriptome and proteome of the soft tick and vector of epizootic bovine abortion, Ornithodoros coriaceus. J Proteomics 71:493–512. doi:10.1016/j.jprot.2008.07.006

    Article  CAS  PubMed  Google Scholar 

  • Francischetti IBM, Mans BJ, Meng Z, Guderra N, Veenstra TD, Pham VM, Ribeiro JMC (2008b) An insight into the sialome of the soft tick, Ornithodoros parkeri. Insect Biochem Mol Biol 38:1–21. doi:10.1016/j.ibmb.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  • Howell CJ, Neitz AWH, Potgieter DJJ (1975) Some toxic and chemical propterties of the oral secretion of the sand tampan, Ornithodoros savignyi Audouin (1825). Onderstepoort J Vet Res 43:99–102 PMID:1196584

    Google Scholar 

  • Imler JL, Hoffmann JA (2000) Signaling mechanisms in the antimicrobial host defence of Drosophila. Curr Opin Microbiol 3:16–22. doi:1061016/S1369-5274(99)00045-4

    Article  CAS  PubMed  Google Scholar 

  • Koizumi N, Morozumi A, Imamura M, Tanaka E, Iwahana H, Sato R (1997) Lipopolysaccharide-binding proteins and their involvement in the bacterial clearance from the hemolymph of the silkworm Bombyx mori. Eur J Biochem 248:217–224. doi:10.111/j.1432-1033.1997.ta-1-00217.x

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 PMID:5432063

    Google Scholar 

  • Levy F, Bulet P, Ehret-Sabatier L (2004) Proteomic analysis of the systemic immune response of Drosophila. Mol Cell Proteomics 3:156–166. doi:10.1074/MCP.M300114-MCP200

    CAS  PubMed  Google Scholar 

  • Madden RD, Sauer JF, Dillwith JW (2002) A proteomics approach to characterizing tick salivary secretions. Exp Appl Acarol 28:77–87. doi:10.1023/B:APPA.0000018241.81636.91

    Article  CAS  PubMed  Google Scholar 

  • Mans BJ, Neitz AWH (2003) Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochem Mol Biol 34:1–17. doi:10.1016/j.ibmb.2003.09.002

    Article  Google Scholar 

  • Mans BJ, Venter JD, Coons LB, Louw AI, Neitz AWH (2004) A reassessment of argasid tick salivary gland ultrastructure from an immuno-cytochemical perspective. Exp Appl Acarol 33:119–129. doi:10.1023/B:APPA.0000030012.47964.b3

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway Jnr CA (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300. doi:10.1126/science.1068883

    Article  CAS  PubMed  Google Scholar 

  • Oleaga A, Escudero-Poblacion A, Camafeita E, Perez-Sanchez R (2007) A proteomic approach to the identification of salivary proteins from the argasid ticks Ornithodoros moubata and Ornithodoros erraticus. Insect Biochem Mol Biol 37:1149–1159. doi:10.1016/j.ibmb.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  • Paton WS, Evans AM (1929) Insects, ticks, mites and venomous animals of medical and veterinary importance, Part 1. HR Grubb LTD. Croydon Great Britain, pp 628–630. doi: 10.1016/j.ibmb.2007.07.003

  • Rachinsky A, Guerro FD, Scoles GA (2007) Differential protein expression in ovaries of uninfected and Babesia-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus. Insect Biochem Mol Biol 37:1291–1308. doi:10.1016/j.ibmb.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  • Ranchinsky A, Guerro FD, Scoles GA (2008) Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut response to infection with Babesia bovis. Vet Parasitol 152:294–313. doi:10.1016/j.vetpar.2007.12.027

    Article  Google Scholar 

  • Samyn B, Sergeant K, Memmi S, Debyser G, Devreese B, Van Beeumen J (2006) MALDI-TOF/TOF de novo sequence analysis of 2-D PAGE-separated proteins from Halirhodospira halophila, a bacterium with unsequenced genome. Electrophoresis 27:2702–2711. doi:10.1002/elps.200500959

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Sunyaev S, Loboda A, Shevchenko A, Bork P, Ens W, Standing KG (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-Quadrople Time-of-Flight Mass Spectrometry and BLAST homology searching. Anal Chem 73:1917–1926

    Article  CAS  PubMed  Google Scholar 

  • Sonenshine DE, Hynes WL (2008) Molecular characterization and related aspects of the innate immune response in ticks. Front Biosci 13:7046–7063 PMID:18508715

    Google Scholar 

  • Taylor D (2006) Innate immunity in ticks: a review. J Acarol Soc Jpn 15(2):109–127. ISSN:0918-1067

    Google Scholar 

  • Untalan PM, Guerrero FD, Haines LR, Pearson TW (2005) Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus. Insect Biochem Mol Biol 35:141–151. doi:10.1016/j.ibmb.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  • Vennestrøm J, Jensen PM (2007) Ixodes ricinus: the potential of two-dimensional gel electrophoresis as a tool for studying host-vector-pathogen interactions. Exp Parasitol 115:53–58. doi:10.1016/j.exppara.2006.05.008

    Article  PubMed  Google Scholar 

  • Vierstraete E, Cerstiaens A, Baggerman G, Van den Bergh G, De Loof A, Schoofs L (2003) Proteomics in Drosophila melanogaster: first 2D database of larval hemolymph proteins. Biochem Biophys Res Commun 304(4):831–838. doi: 10.1016/S0006-291x(03)00683-1

    Google Scholar 

  • Vierstraete E, Verleyen P, Sas F, van den Bergh G, De Loof A, Arckens L, Schoofs L (2004) The instantly released Drosophila immune proteome is infection-specific. Biochem Biophys Res Commun 317:1052–1060. doi:10.1016/j.bbrc.2004.03.150

    Article  CAS  PubMed  Google Scholar 

  • Wickramasekara S, Bunikis J, Wysocki V, Barbour AG (2008) Identification of residual blood proteins in ticks by mass spectrometry proteomics. Emerg Infect Dis 14:1273–1275. doi:10.3201/eid1408.080227

    Article  CAS  PubMed  Google Scholar 

  • Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672. doi:10.1002/1522-2683(200011)21:17<3666>3.0.C.O;2-6

    Article  CAS  PubMed  Google Scholar 

  • Yarmush M, Jayaraman A (2002) Advances in proteomic technologies. Annu Rev Biomed Eng 4:349–373. doi:10.1146/annurev.bioeng.4.020702.153443

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Thangamani S, Ho B, Ding JL (2005) The ancient origin of the complement system. EMBO J 24:382–394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the National Research Foundation of South Africa and the University of Pretoria for financial support. We thank the University of York, Department of Biology for MS/MS analysis of proteins as well as C. Gains from the University of York for her assistance in the interpretation of the MS/MS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anabella R. M. Gaspar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stopforth, E., Neitz, A.W.H. & Gaspar, A.R.M. A proteomics approach for the analysis of hemolymph proteins involved in the immediate defense response of the soft tick, Ornithodoros savignyi, when challenged with Candida albicans . Exp Appl Acarol 51, 309–325 (2010). https://doi.org/10.1007/s10493-010-9338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-010-9338-z

Keywords

Navigation