Skip to main content
Log in

Formal and relational concept analysis for fuzzy-based automatic semantic annotation

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Semantic annotation is at the core of Semantic Web technology: it bridges the gap between legacy non-semantic web resource descriptions and their elicited, formally specified conceptualization, converting syntactic structures into knowledge structures, i.e., ontologies. Most existing approaches and tools are designed to deal with manual or semi-/automatic semantic annotation that exploits available ontologies through the pattern-based discovery of concepts. This work aims to generate the automatic semantic annotation of web resources, without any prefixed ontological support. The novelty of our approach is that, starting from web resources, content with a high-level of abstraction is obtained: concepts, connections between concepts, and instance-population are identified and arranged into an ex-novo ontology. The framework is designed to process resources from different sources (textual information, images, etc.) and generate an ontology-based annotation. A data-driven analysis reveals the data and their intrinsic relationships (in the form of triples) extracted from the resource content. On the basis of the discovered semantics, corresponding concepts and properties are modeled, allowing an ad hoc ontology to be built through an OWL-based coding annotation. The benefit of this approach is the generation of knowledge structured in a quite automatic way (i.e., the human support is restricted to the configuration of some parameters). The approach exploits a fuzzy extension of the mathematical modeling of Formal Concept Analysis and Relational Concept Analysis to generate the ontological structure of data resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://annotation.semanticweb.org.

  2. http://www.acemedia.org/aceMedia/results/software/m-ontomat-annotizer.html.

  3. http://www.ontotext.com/kim.

  4. http://gate.ac.uk/.

  5. AeroSWARM project page (http://ubot.lockheedmartin.com/ubot/hotdaml/aeroswarm.html accessed on 2 August 2004).

  6. http://www.opencalais.com.

  7. The fuzzy intersection and union are calculated using t-norm and t-conorm, respectively. The most commonly adopted t-norm is the minimum, while the most common t-conorm is the maximum. That is, given two fuzzy sets A and B with membership functions μ A (x) and μ B (x), μ AB (x)=min(μ A (x),μ B (x)) and μ AUB (x)=max(μ A (x),μ B (x)).

  8. Statistical parsers associate grammar rules according to a probability function. We have chosen the Stanford Parser: http://nlp.stanford.edu/software/lex-parser.shtml.

  9. http://Wordnet.princeton.edu/.

  10. http://www.Alchemyapi.com/api/demo.html.

  11. http://edition.cnn.com/services/rss/.

  12. http://rss.cnn.com/rss/edition.rss.

References

  1. Van Rijsbergen CJ (1979) Information retrieval, 2nd edn. Dept of Computer Science, University of Glasgow, Glasgow

    Google Scholar 

  2. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  3. Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations. Springer, Berlin

    Book  MATH  Google Scholar 

  4. Priss U (1996) Relational concept analysis: semantic structures in dictionaries and lexical databases Dissertation, TU Darmstadt. Shaker Verlag, Aachen

    Google Scholar 

  5. Maedche A, Staab S (2001) Ontology learning for the semantic web. IEEE Intell Syst 16(2):72–79

    Article  Google Scholar 

  6. Yang Y (1999) An evaluation of statistical approaches to text categorization. J Inf Retr 1(1/2):67–88

    Google Scholar 

  7. Reeve L, Han H (2005) Survey of semantic annotation platforms. In: Liebrock LM (ed) Proceedings of the 2005 ACM symposium on applied computing (SAC ’05). ACM, New York, pp 1634–1638

    Chapter  Google Scholar 

  8. Kettler B, Starz J, Miller W, Haglich P (2005) A template-based markup tool for semantic web content. In: Proc of the 4th int semantic web conf (ISWC 2005). LNCS, vol 3729. Springer, Berlin, pp 446–460

    Chapter  Google Scholar 

  9. Vargas-Vera M, Motta E, Domingue J, Lanzoni M, Stutt A, Ciravegna F (2003) MnM: a tool for automatic support on semantic markup. KMi technical report, TR number 133. Sept 2003

  10. Kogut P, Holmes W (2001) AeroDAML: applying information extraction to generate DAML annotations from web pages. In: Workshop on knowledge markup and semantic annotation. 1st international conference on knowledge capture (K-CAP 2001), Victoria, B.C., Canada

    Google Scholar 

  11. Dzbor M, Domenique J, Motta E (2004) Magpie: browsing and navigating on the semantic web. In: Proceedings ACM conference on intelligent user interfaces, Portugal, January, pp 191–197

    Google Scholar 

  12. Ciravegna F, Chapman S, Dingli A, Wilks Y (2004) Learning to harvest information for the semantic web. In: Proceedings of the 1st European semantic web symposium, Heraklion, Greece, 10–12 May

    Google Scholar 

  13. Kuznetsov S (2004) Machine learning and formal concept analysis—concept lattices. Lecture notes in computer science, vol 2961. Springer, Berlin

    Google Scholar 

  14. Zhou B, Hui SC, Chang K (2005) A formal concept analysis approach for web usage mining. In: Shi Z, He Q (eds) Intelligent information Processing II. Springer, London, pp 437–441

    Chapter  Google Scholar 

  15. Wille R, Hoberg R, Beeh V (1998) Relational concept analysis: semantic structures in dictionaries and lexical databases. Shaker Verlag, Aachen

    Google Scholar 

  16. Lukasiewicz T, Straccia U (2008) Tightly coupled fuzzy description logic programs under the answer set semantics for the semantic web. Int J Semantic Web Inf Syst 4(3):68–89

    Article  Google Scholar 

  17. Cross V, Kandasamy M (2011) Fuzzy concept lattice construction: a basis for building fuzzy ontologies. In: IEEE international conference on fuzzy systems, no 6007623, pp 1743–1750

    Google Scholar 

  18. Martin T, Shen Y, Majidian A (2010) Discovery of time-varying relations using fuzzy formal concept analysis and associations. Int J Intell Syst 25(12):1217–1248

    Article  MATH  Google Scholar 

  19. Burusco A, Fuentes-Gonzalez R (1998) Construction of the L-fuzzy concept lattice. Fuzzy Sets Syst 97:109–114

    Article  MATH  MathSciNet  Google Scholar 

  20. Belohlavek R (2001) Lattices of fixed points of fuzzy Galois connections. Math Log Q 47:111–116

    Article  MATH  MathSciNet  Google Scholar 

  21. Rouane Hacene M, Napoli A, Valtchev P, Toussaint Y, Bendaoud R (2008) Ontology learning from text using relational concept analysis. In: Proceedings of the 2008 international MCETECH conference on e-technologies (MCETECH ’08). IEEE Computer Society, Washington, pp 154–163

    Chapter  Google Scholar 

  22. De Maio C, Fenza G, Loia V, Senatore S (2012) Hierarchical web resources retrieval by exploiting fuzzy formal concept analysis. Inf Process Manag 48(3):399–418. doi:10.1016/j.ipm.2011.04.003

    Article  Google Scholar 

  23. Zesch T, Müller C, Gurevych I (2008) Extracting lexical semantic knowledge from Wikipedia and Wiktionary. In: Proceedings of the conference on language resources and evaluation (LREC), Electronic proceedings

    Google Scholar 

  24. Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. In: 16th international world wide web conference (WWW 2007). ACM, New York

    Google Scholar 

  25. Cimiano P, Hotho A, Staab S (2005) Learning concept hierarchies from text corpora using formal concept analysis. J Artif Intell Res 24(1):305–339

    MATH  Google Scholar 

  26. Zhou W, Liu Z-tian, Zhao Y (2007) Ontology learning by clustering based on fuzzy formal concept analysis. In: 31st annual international computer software and applications conference (COMPSAC, vol 1, pp 204–210. 2007

    Google Scholar 

  27. De Maio C, Fenza G, Loia V, Senatore S (2009) Towards an automatic fuzzy ontology generation. In: FUZZ-IEEE 2009, ICC Jeju, Jeju Island, Korea, 20–24 August

    Google Scholar 

  28. van der Merwe D, Obiedkov SA, Kourie DG (2004) AddIntent: a new incremental algorithm for constructing concept lattices. In: Eklund P (ed) ICFCA 2004. LNCS (LNAI), vol 2961. Springer, Heidelberg, pp 372–385

    Google Scholar 

  29. Belohlávek R, De Baets B, Outrata J, Vychodil V (2007) Lindig’s algorithm for concept lattices over graded attributes. In: Modeling decisions for artificial intelligence, vol 4617, pp 156–167

    Chapter  Google Scholar 

  30. Belohlavek R, De Baets B, Outrata J, Vychodil V (2010) Computing the lattice of all fixpoints of a fuzzy closure operator. IEEE Trans Fuzzy Syst 18(3):546–557

    Article  Google Scholar 

  31. Tartir S, Budak Arpinar I, Moore M, Sheth AP, Meza BA (2005) Ontoqa: metric-based ontology quality analysis. In: Proceedings of IEEE workshop on knowledge acquisition from distributed, autonomous, semantically heterogeneous data and knowledge sources, November 45(53)

    Google Scholar 

  32. Rosaci D (2007) CILIOS: connectionist inductive learning and inter-ontology similarities for recommending information agents. Inf Syst 32(6):793–825. Elsevier

    Article  Google Scholar 

  33. Bodyanskiy Y, Shubkina O (2011) Semantic annotation of text documents using modified probabilistic neural network. In: IEEE 6th international conference on intelligent data acquisition and advanced computing systems (IDAACS), pp 328–331

    Chapter  Google Scholar 

  34. Collobert R, Weston J (2007) Fast semantic extraction using a novel neural network architecture. In: Proceedings of the 45th annual meeting of the association of computational linguistics. Prague, Czech Republic, June, pp 560–567. Association for Computational Linguistics

    Google Scholar 

  35. Peanho CA, Stagni H, Correa da Silva FS (2012) Semantic information extraction from images of complex documents. Appl Intell 37(4):543–557

    Article  Google Scholar 

  36. Reiter R, Macworth AK (1989) A logical framework for depiction and image interpretation. Artificial Intelligence 41(125–155)

    Google Scholar 

  37. Shanahan MP (2005) Perception as abduction: turning sensor data into meaningful representation. Cogn Sci 1:103–134

    Article  Google Scholar 

  38. Espinosa S, Kaya A, Melzer S, Möller R, Wessel M (2007) Towards a media interpretation framework for the semantic web. In: Proceedings of the IEEE/WIC/ACM international conference on web intelligence (WI’07). IEEE CS, Washington, DC, USA, pp 374–380

    Chapter  Google Scholar 

  39. Hummel B, Thiemann W, Lulcheva I (2007) Description logic for vision based intersection understanding. In: Proc cognitive systems with interactive sensors (COGIS). Stanford University, CA

    Google Scholar 

  40. Hobbs JR, Stickel M, Martin P (1993) Interpretation as abduction. Artif Intell 63:69–142

    Article  Google Scholar 

  41. Rokia B, Hacene MR, Toussaint Y, Delecroix B, Napoli A (2007) Text-based ontology construction using relational concept analysis. In: International workshop on ontology dynamics (IWOD 2007)

    Google Scholar 

  42. Espinosa Peraldi IS, Kaya A, Möller R (2011) Logical formalization of multimedia interpretation. In: Paliouras G, Spyropoulos CD, Tsatsaronis G (eds) Knowledge-driven multimedia information extraction and ontology evolution—bridging the semantic gap. Lecture notes in computer science, vol 6050. Springer, Berlin, pp 110–133

    Chapter  Google Scholar 

  43. Wong T-L (2012) Learning to adapt cross language information extraction wrapper. Appl Intell 36(4):918–931

    Article  Google Scholar 

  44. Iannone L, Palmisano I, Fanizzi N (2007) An algorithm based on counterfactuals for concept learning in the semantic web. Appl Intell 26(2):139–159

    Article  Google Scholar 

  45. De Carolis B, Cozzolongo G, Pizzutilo S, Silvestri V (2007) MyMap: generating personalized tourist descriptions. Appl Intell 26(2):111–124

    Article  Google Scholar 

  46. Griol D, Carbo J, Molina JM (2013) Bringing context-aware access to the web through spoken interaction. Appl Intell 38(4):620–640

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their valuable comments to improve the quality of the paper. This research is partially supported by the EC under the Project ARISTOTELE “Personalized Learning & Collaborative Working Environments Fostering Social Creativity and Innovations Inside the Organisations”, VII FP, Theme ICT-2009.4.2 (Technology-Enhanced Learning), Grant Agreement No. 257886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Senatore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Maio, C., Fenza, G., Gallo, M. et al. Formal and relational concept analysis for fuzzy-based automatic semantic annotation. Appl Intell 40, 154–177 (2014). https://doi.org/10.1007/s10489-013-0451-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-013-0451-7

Keywords

Navigation