Skip to main content
Log in

Chryseobacterium profundimaris sp. nov., a new member of the family Flavobacteriaceae isolated from deep-sea sediment

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A Gram-stain negative, strictly aerobic, rod-shaped, non-motile bacterium, designated strain DY46T, was isolated from Atlantic Ocean sediment. The isolate was found to grow in medium containing 0–3.0 % (w/v) NaCl (optimally at 0–1.0 %), at 4–37 °C and pH 5.0–8.0. Chemotaxonomic analysis detected MK-6 as the sole isoprenoid quinone. The major fatty acids were identified iso-C15:0, iso-C17:0 3-OH, iso-C17:1 ω9c and summed feature 3 (comprising iso-C15:0 2-OH and/or C16:1 ω7c). The DNA G + C content was determined to be 40.7 mol %. Phylogenetic analyses based on the 16S rRNA gene sequence indicated that strain DY46T falls within the cluster comprising Chryseobacterium species. The levels of 16S rRNA gene sequence similarity between strain DY46T and the type strains of the Chryseobacterium species with validly published names ranged from 92.4 to 99.1 %, the high values (>97 %) being with Chryseobacterium takakiae A1-2T (99.1 %), C. taiwanense BCRC 17412T (98.0 %), C. taeanense PHA3-4T (97.3 %), C. hispalense DSM 25574T (97.3 %), C. camelliae THG C4-1T (97.2 %), C. gregarium DSM 19109T (97.1 %) and C. wanjuense R2A10-2T (97.0 %). The DNA–DNA relatedness values between strain DY46T and the type strains of the above closely related species were 47, 57, 24, 34, 6, 40 and 21 %, respectively. On the basis of phenotypic and genotypic characteristics, strain DY46T represents a novel member within the genus Chryseobacterium, for which the name Chryseobacterium profundimaris is proposed. The type strain is DY46T (=CGMCC 1.12663T = JCM 19801T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bernardet JF, Nakagawa Y (2006) An introduction to the family Flavobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 7, 3rd edn. Springer, New York, pp 455–480

    Google Scholar 

  • Bernardet JF, Hugo C, Bruun B (2006) The genera Chryseobacterium and Elizabethkingia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 7, 3rd edn. Springer, New York, pp 180–196

    Google Scholar 

  • Bernardet JF, Hugo C, Bruun B et al (2010) Genus X. Chryseobacterium Vandamme et al. 1994a, 829VP. In: Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ, Staley JT, Ward N, Brown D, Parte A (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 180–196

    Google Scholar 

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Dong X-Z, Cai M-Y (2001) Chapter 12, morphological characteristics. In: Dong X-Z, Cai M-Y (eds) Determinative manual for routine bacteriology, 1st edn. Scientific Press, Beijing, pp 353–364 (English translation)

    Google Scholar 

  • Farmer JJ III, Janda JM, Brenner FW, Cameron DN, Birkhead KM (2005) Genus I. Vibrio Pacini 1854, 411AL. In: Dworkin M, Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 494–546

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Huß VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3, 1st edn. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Kim KK, Kim MK, Lim JH, Park HY, Lee ST (2005) Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55:1287–1293

    Article  CAS  PubMed  Google Scholar 

  • Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki K (1987) Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  • Kuykendall LD, Roy MA, O’Neil JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    Article  CAS  Google Scholar 

  • Leifson E (1963) Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marmur J (1961) A procedure of the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Article  CAS  PubMed  Google Scholar 

  • Parte AC (2014) LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reichenbach H (1989) Order I. Cytophagales Leadbetter 1974. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 2011–2013

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MC, Nesme X, Rosselló-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Bacteriol 52:1043–1047

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B (1994) New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831

    Article  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Zhao R, Chen XY, Li XD, Chen ZL, Li YH (2015) Chryseobacterium takakiae sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol 65(Pt 1):71–76

    Article  PubMed  Google Scholar 

  • ZoBell CE (1941) Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75

Download references

Acknowledgments

This work was supported by grants from China Ocean Mineral Resources R & D Association (COMRA) Special Foundation (DY125-15-R-03 and DY125-14-E-02) and the National Natural Science Foundation of China (41276173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Huo, YY., Li, ZY. et al. Chryseobacterium profundimaris sp. nov., a new member of the family Flavobacteriaceae isolated from deep-sea sediment. Antonie van Leeuwenhoek 107, 979–989 (2015). https://doi.org/10.1007/s10482-015-0390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0390-x

Keywords

Navigation