Skip to main content

Advertisement

Log in

An energy-efficient and ultra-low-voltage power oscillator in CMOS 65 nm

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In a direct modulation scheme and particularly in portable and wireless sensor network applications, the oscillator limits the transmitter efficiency therefore, the oscillator efficiency is critical and high-efficiency and high-power oscillators are increasingly required. This paper presents a high-efficiency and ultra-low-voltage power oscillator that operates at 2.4 GHz and is implemented in 65 nm CMOS technology. The power oscillator is a self-oscillating class-E power amplifier (PA) that utilizes a positive feedback system. A class-E PA is selected due to its high efficiency. The power oscillator has an optimized power consumption and output power, where a 2.4 mW power consumption is achieved under a 0.4 V power supply. The proposed oscillator demonstrates a maximum output power of \(-0.45\) dBm and a peak efficiency of 37.5%. The oscillator is tunable between 1.66 and 2.78 GHz. The oscillator is robust to a \(\pm\,15\%\) frequency deviation from a 2.44 GHz nominal frequency due to process, voltage, temperature variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee, H., Park, C., & Hong, S. (2009). A quasi-four-pair class-E CMOS RF power amplifier with an integrated passive device transformer. IEEE Transactions on Microwave Theory and Techniques, 57(4), 752. https://doi.org/10.1109/TMTT.2009.2015122.

    Article  Google Scholar 

  2. Carrara, F., Presti, C. D., Pappalardo, F., & Palmisano, G. (2009). A 2.4-GHz 24-dBm SOI CMOS power amplifier with fully integrated reconfigurable output matching network. IEEE Transactions on Microwave Theory and Techniques, 57(9), 2122. https://doi.org/10.1109/TMTT.2009.2027078.

    Article  Google Scholar 

  3. Contaldo, M., Banerjee, B., Ruffieux, D., Chabloz, J., Roux, E. L., & Enz, C. C. (2010). A 2.4-GHz BAW-based transceiver for wireless body area networks. IEEE Transactions on Biomedical Circuits and Systems, 4(6), 391. https://doi.org/10.1109/TBCAS.2010.2081363.

    Article  Google Scholar 

  4. Hu, W. Y., Lin, J. W., Tien, K. C., Hsieh, Y. H., Chen, C. L., Tso, H. T., et al. (2010). A 0.18-μm CMOS RF transceiver with self-detection and calibration functions for bluetooth V2.1+ EDR Applications. IEEE Transactions on Microwave Theory and Techniques, 58(5), 1367. https://doi.org/10.1109/TMTT.2010.2042908.

  5. Bhatti, I., Roufoogaran, R., & Castaneda, J. (2005). In Solid-state circuits conference on ISSCC 2005 IEEE international digest of technical papers (Vol. 1, pp. 106–587). https://doi.org/10.1109/ISSCC.2005.1493891.

  6. Ellinger, F., Lott, U., & Bachtold, W. (2001). Radio frequency integrated circuits and technologies. IEEE Transactions on Microwave Theory and Techniques, 49(1), 203.

    Article  Google Scholar 

  7. Devine, R., & Tofighi, M. R. (2008). Class E colpitts oscillator for low power wireless applications. Electronics Letters, 44(21), 1.

    Article  Google Scholar 

  8. Juntunen, E., Dawn, D., Pinel, S., & Laskar, J. (2011). A high-efficiency, high-power millimeter-wave oscillator using a feedback class-E power amplifier in 45 nm CMOS. IEEE Microwave and Wireless Components Letters, 21(8), 430. https://doi.org/10.1109/LMWC.2011.2157334.

    Article  Google Scholar 

  9. Deltimple, N., Deval, Y., Belot, D., & Kerherve, E. (2008). In 2008 IEEE international symposium on circuits and systems (pp. 984–987). https://doi.org/10.1109/ISCAS.2008.4541585.

  10. Chang, H. Y., Lin, C. H., Liu, Y. C., Li, W. P., & Wang, Y. C. (2015). A 2.5 GHz high efficiency high power low phase noise monolithic microwave power oscillator. IEEE Microwave and Wireless Components Letters, 25(11), 730. https://doi.org/10.1109/LMWC.2015.2479849.

    Article  Google Scholar 

  11. Kazimierczuk, M. K., Krizhanovski, V. G., Rassokhina, J. V., & Chernov, D. V. (2005). Class E oscillator with electrically elongated feedback network. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(6), 1138.

    Article  Google Scholar 

  12. Jeon, S., Suarez, A., & Rutledge, D. B. (2006). Nonlinear design technique for high-power switching-mode oscillators. IEEE Transactions on Microwave Theory and Techniques, 54(10), 3630.

    Article  Google Scholar 

  13. Sokal, N. O., & Sokal, A. D. (1975). Class EA new class of high-efficiency tuned single-ended switching power amplifiers. IEEE Journal of solid-state circuits, 10(3), 168.

    Article  Google Scholar 

  14. Kraemer, M., Dragomirescu, D., & Plana, R. (2011). A high efficiency differential 60 GHz VCO in a 65 nm CMOS technology for WSN applications. IEEE Microwave and Wireless Components Letters, 21(6), 314. https://doi.org/10.1109/LMWC.2011.2134841.

    Article  Google Scholar 

  15. Dran, S., Martin, N., Deltimple, N., Kerherv, E., Martineau, B., & Belot, D. (2012). In 2012 19th IEEE international conference on electronics, circuits, and systems (ICECS 2012) (pp. 173–176). https://doi.org/10.1109/ICECS.2012.6463772.

  16. Ji, X., Xia, X., He, L., & Guo, Y. (2017). Self-biased CMOS LC VCO based on trans-conductance linearisation technique. Electronics Letters, 53(22), 1460.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zina Saheb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saheb, Z., El-Masry, E. An energy-efficient and ultra-low-voltage power oscillator in CMOS 65 nm. Analog Integr Circ Sig Process 100, 149–156 (2019). https://doi.org/10.1007/s10470-019-01431-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01431-z

Keywords

Navigation