Skip to main content
Log in

On Ricci solitons of cohomogeneity one

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We analyse some properties of the cohomogeneity one Ricci soliton equations, and use Ansätze of cohomogeneity one to produce new explicit examples of complete Kähler Ricci solitons of expanding, steady and shrinking types. These solitons are foliated by hypersurfaces which are circle bundles over a product of Fano Kähler–Einstein manifolds or over coadjoint orbits of a compactly connected semisimple Lie group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apostolov V., Calderbank D., Gauduchon P., Tønnesen-Friedman C.: Hamiltonian 2-forms in Kähler geometry IV: Weakly Bochner–Flat Kähler manifolds. Commun. Anal. Geom. 16, 91–126 (2008)

    MATH  Google Scholar 

  2. Back, A.: Local Theory of Equivariant Einstein Metrics and Ricci Realizability on Kervaire Spheres, Preprint (1986)

  3. Bando S.: Real analyticity of solutions of Hamilton’s equation. Math. Z. 195, 93–97 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bérard Bergery L.: Sur des nouvelles variétés riemanniennes d’Einstein. Publication de l’Institut Elie Cartan, Nancy (1982)

    Google Scholar 

  5. Besse A.: Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 10. Springer, Berlin (1987)

    Google Scholar 

  6. Bryant, R.: Unpublished work

  7. Cao H.D.: Existence of Gradient Ricci Solitons, Elliptic and Parabolic Methods in Geometry, pp. 1–16. A. K. Peters, Wellesley (1996)

    Google Scholar 

  8. Cao H.D.: Limits of solutions to the Kähler–Ricci flow. J. Differ. Geom. 45, 257–272 (1997)

    MATH  Google Scholar 

  9. Cao H.D.: Geometry of Ricci solitons. Chin. Ann. Math. 27B, 121–142 (2006)

    Google Scholar 

  10. Chave T., Valent G.: On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties. Nucl. Phys. B478, 758–778 (1996)

    Article  MathSciNet  Google Scholar 

  11. Chow B., Chu S.C., Glickenstein D., Guenther C., Isenberg J., Ivey T., Knopf D., Lu P., Luo F., Nei L.: The Ricci Flow: Techniques and Applications, Mathematical Surveys and Monographs, vol. 135. American Mathematical Society, Providence (2007)

    Google Scholar 

  12. Chow B., Lu P., Ni L.: Hamilton’s Ricci Flow, Graduate Studies in Mathematics, vol. 77. American Mathematical Society–Science Press, Providence (2006)

    Google Scholar 

  13. Clemens C.H., Griffiths P.A.: The intermediate Jacobian of the cubic threefold. Ann. Math. 95, 281–356 (1972)

    Article  MathSciNet  Google Scholar 

  14. Cvetič M., Gibbons G., Lü H., Pope C.: Ricci-flat metrics, harmonic forms and brane resolutions. Commun. Math. Phys. 232, 457–500 (2003)

    MATH  Google Scholar 

  15. Dancer A., Wang M.: Kähler–Einstein metrics of cohomogeneity one. Math. Ann. 312, 503–526 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dancer A., Wang M.: Some new examples of non-Kähler Ricci solitons. Math. Res. Lett. 16, 349–363 (2009)

    MATH  MathSciNet  Google Scholar 

  17. DeTurck D., Kazdan J.: Some regularity theorems in Riemannian geometry. Ann. Sci École Norm. Sup., 4e série, t. 14, 249–260 (1981)

    MATH  MathSciNet  Google Scholar 

  18. Eminenti, M., La Nave, G., Mantegazza, C.: Ricci solitons—the equation point of view. arXiv:math/0607546

  19. Eschenburg J., Wang M.: The initial value problem for cohomogeneity one Einstein metrics. J. Geom. Anal. 10, 109–137 (2000)

    MATH  MathSciNet  Google Scholar 

  20. di Cerbo, L.F.: Generic properties of homogeneous Ricci solitons. arXiv:math.DG/07110465

  21. Feldman M., Ilmanen T., Knopf D.: Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons. J. Differ. Geom. 65, 169–209 (2003)

    MATH  MathSciNet  Google Scholar 

  22. Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  23. Guan Z.D.: Quasi-Einstein metrics. Int. J. Math. 6, 371–379 (1995)

    Article  MATH  Google Scholar 

  24. Hamilton R.S.: The formation of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1995)

    MathSciNet  Google Scholar 

  25. Ivey T.: New examples of complete Ricci solitons. Proc. AMS 122, 241–245 (1994)

    MATH  MathSciNet  Google Scholar 

  26. Koiso, N.: On rotationally symmetric Hamilton’s equation for Kähler–Einstein metrics. Advanced Studies in Pure Mathematics, vol. 18-I. Academic Press, Tokyo, pp. 327–337 (1990)

  27. Koiso, N., Sakane, Y.: Non-homogeneous Kähler–Einstein metrics on compact complex manifolds. In: Curvature and Topology of Riemannian Manifolds. Springer Lecture Notes in Mathematics, vol. 1201. Springer, Berlin, pp. 165–179 (1986)

  28. Koiso N., Sakane Y.: Non-homogeneous Kähler–Einstein metrics on compact complex manifolds II. Osaka Math. J. 25, 933–959 (1988)

    MATH  MathSciNet  Google Scholar 

  29. Lauret J.: Ricci soliton homogeneous nilmanifolds. Math. Ann. 319, 715–733 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lawson, H.B. Jr.: Lectures on minimal submanifolds, Publish or Perish, Berkeley (1980)

  31. Nadel A.M.: Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature. Ann. Math. 132, 549–596 (1990)

    Article  MathSciNet  Google Scholar 

  32. Page D.: A compact rotating gravitational instanton. Phys. Lett. 79B, 235–238 (1979)

    MathSciNet  Google Scholar 

  33. Pedersen H., Tønnesen-Friedman C., Valent G.: Quasi-Einstein Kähler metrics. Lett. Math. Phys. 50, 229–241 (2000)

    Article  Google Scholar 

  34. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159

  35. Podesta F., Spiro A.: Kähler manifolds with large isometry group. Osaka J. Math. 36, 805–833 (1999)

    MATH  MathSciNet  Google Scholar 

  36. Podesta F., Spiro A.: Kähler–Ricci solitons on homogeneous toric bundles. J. Reine Angew. Math. 642, 109–127 (2010)

    MATH  MathSciNet  Google Scholar 

  37. Sakane Y.: Examples of compact Einstein Kähler manifolds with positive Ricci tensor. Osaka Math. J. 23, 585–617 (1986)

    MATH  MathSciNet  Google Scholar 

  38. Shi W.X.: Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30, 223–301 (1989)

    MATH  Google Scholar 

  39. Shi W.X.: Ricci deformation of the metric on complete noncompact Riemannian manifolds. J. Differ. Geom. 30, 303–394 (1989)

    MATH  Google Scholar 

  40. Siu Y.-T.: The existence of Kähler–Einstein metrics on manifolds with positive anti-canonical line bundle and a suitable finite symmetry group. Ann. Math. 127, 585–627 (1988)

    Article  MathSciNet  Google Scholar 

  41. Tian G.: On Kähler–Einstein metrics on certain Kähler manifolds with c 1(M) > 0. Invent. Math. 89, 225–246 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  42. Tian G.: Kähler–Einstein manifolds of positive scalar curvature, in Surveys in Differential Geometry, vol. VI: Essays on Einstein Manifolds. International Press, Boston (1999)

    Google Scholar 

  43. Tian G., Zhu X.: Uniqueness of Kähler–Ricci solitons. Acta Math. 184, 271–305 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  44. Tian G., Zhu X.: A new holomorphic invariant and uniqueness of Kähler–Ricci solitons. Commun. Math. Helv. 77, 297–325 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wang M.: Einstein metrics from symmetry and bundle constructions. Surv. Differ. Geom. 6, 287–325 (1999)

    Google Scholar 

  46. Wang J., Wang M.: Einstein metrics on S 2-bundles. Math. Ann. 310, 497–526 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  47. Wang X.-J., Zhu X.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188, 87–103 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yang, B.: A characterization of Koiso’s typed solitons. arXiv:math.DG/0802.0300

  49. Yano K.: On harmonic and Killing vector fields. Ann. Math. 55, 38–45 (1952)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to McKenzie Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dancer, A.S., Wang, M.Y. On Ricci solitons of cohomogeneity one. Ann Glob Anal Geom 39, 259–292 (2011). https://doi.org/10.1007/s10455-010-9233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-010-9233-1

Keywords

Mathematics Subject Classification (2000)

Navigation