Skip to main content
Log in

Evaluation of the adsorption kinetics of brilliant green dye onto a montmorillonite/alginate composite beads by the shrinking core model

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Montmorillonite/alginate composite beads have been studied for adsorption of brilliant green dye in batch experiments. The geometry and features of this clay/polymer composite, in combination with the strong color of the dye, were very useful to apply and test in a simple way the shrinking core model (SCM). This model is very popular for describing adsorption in porous systems, but not in clay/polymer composite beads. The SCM describes the adsorption as a diffusion process of the adsorbate through a spherical shell. The great advantage of using the clay and the dye is that they allow observing with the naked eye or through digital photographs the progress of the front of adsorption (penetration radius) as the reaction takes place. This was never informed in the literature. The experimental changes in penetration radius and dye concentration with time were compared with SCM predictions at different initial concentrations of brilliant green. There was an excellent agreement between theory and experiments, and thus the kinetics of the process could be thoroughly evaluated. The estimated values of the parameters liquid phase mass transfer coefficient and effective diffusion coefficient in the adsorbent are kf > 0.00008 m s−1 and Dp = 5 × 10−10 m2 s−1 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Ct :

Liquid phase concentration at time t (mg L−1)

Cet :

Equilibrium liquid phase concentration at time t (mg L−1)

C0 :

Initial liquid phase concentration (mg L−1)

Dp :

Effective diffusion coefficient in the adsorbent (m2 s−1)

kf :

Liquid phase mass transfer coefficient (m s−1)

k0 :

Langmuir isotherm constant (L mg−1)

R:

Adsorbent particle radius (m)

Rf :

Radius of concentration front (m)

t:

Time (s)

V:

Volume of batch reactor (L)

W:

Weight of the adsorbent (g)

Ye :

Solid phase concentration at a particular time t (mg g−1)

Ys :

Langmuir isotherm constant (L g−1)

ρ:

Adsorbent density (g L−1)

F:

Liquid phase

0:

Initial

t :

At time t

References

  • Adzmi, F., Meon, S., Musa, M.H., Yusuf, N.A.: Preparation, characterization and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay. J. Microencapsul. 29, 205–210 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Aguiar, J.E., de Oliveira, J.C.A., Silvino, P.F.G., Neto, J.A., Silva Jr., I.J., Lucena, S.M.P.: Correlation between PSD and adsorption of anionic dyes with different molecular weights on activated carbon. Colloids Surf. A 496, 125–131 (2016)

    Article  CAS  Google Scholar 

  • Aichour, A., Zaghouane-Boudiaf, H., Viseras Iborra, C., Sanchez Polo, M.: Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: kinetics, equilibrium and thermodynamic studies. J. Mol. Liquids 256, 533–540 (2018)

    Article  CAS  Google Scholar 

  • An, B., Lee, H., Lee, S., Lee, S.H., Choi, J.W.: Determining the selectivity of divalent metal cations for the carboxyl group of alginate hydrogel beads during competitive sorption. J. Hazard. Mater. 298, 11–18 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Andersen, W.C., Turnipseed, S.B., Karbiwnyk, C.M., Lee, R.H., Clark, S.B., Rowe, W.D., Madson, M.R., Miller, K.E.: Multiresidue method for the triphenylmethane dyes in fish: Malachite green, crystal (gentian) violet, and brilliant green. Anal. Chim. Acta 637, 279–289 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Azhar, F.F., Olad, A.: A study on sustained release formulations for oral delivery of 5-fluorouracil based on alginate-chitosan/montmorillonite nanocomposite system. Appl. Clay Sci. 101, 288–296 (2014)

    Article  CAS  Google Scholar 

  • Bakr, A.S.A., Moustafa, Y.M., Motawea, E.A., Yehia, M.M., Khalil, M.M.H.: Removal of ferrous ions from their aqueous solutions onto NiFe2O4–alginate composite beads. J. Environ. Chem. Eng. 3, 1486–1496 (2015)

    Article  CAS  Google Scholar 

  • Barreca, S., Orecchio, S., Pace, A.: The effect of montmorillonite clay in alginate gel beads for polychlorinated biphenyl adsorption: isothermal and kinetic studies. Appl. Clay Sci. 99, 220–228 (2014)

    Article  CAS  Google Scholar 

  • Cataldo, S., Muratore, N., Orecchio, S., Pettignano, A.: Enhancement of adsorption ability of calcium alginate gel beads towards Pd(II) ion. A kinetic and equilibrium study on hybrid Laponite and Montmorillonite–alginate gel beads. Appl. Clay Sci. 118, 162–170 (2015)

    Article  CAS  Google Scholar 

  • Chen, B., Hui, C.W., McKay, G.: Pore-surface diffusion modeling for dyes from effluent on pith. Langmuir 17, 740–748 (2001)

    Article  CAS  Google Scholar 

  • Chiew, C.S.C., Yeoh, H.K., Pasbakhsh, P., Krishnaiah, K., Poh, P.E., Tey, B.T., Chan, E.S.: Halloysite/alginate nanocomposite beads: kinetics, equilibrium and mechanism for lead adsorption. Appl. Clay Sci. 119, 301–310 (2016)

    Article  CAS  Google Scholar 

  • Daneshvar, N., Ayazloo, M., Khataee, A.R., Pourhassan, M.: Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Biores. Technol. 98, 1176–1182 (2007)

    Article  CAS  Google Scholar 

  • da Silva Fernandes, R., de Moura, M.R., Glenn, G.M., Aouada, F.A.: Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. J. Mol. Liq. 265, 327–336 (2018)

    Article  CAS  Google Scholar 

  • Djedouani, D., Chabani, M., Amrane, A., Bensmaili, A.: Application of shrinking core model to the adsorption of oxytetracycline onto peanut hullderived activated carbon in a closed-loop fixedbed reactor. Desalin. Water Treat. 57, 14304–14314 (2016)

    Article  CAS  Google Scholar 

  • Ely, A., Baudu, M., Kankou, M.O., Basly, J.P.: Copper and nitrophenol removal by low cost alginate/Mauritanian clay composite beads. Chem. Eng. J. 178, 168–174 (2011)

    Article  CAS  Google Scholar 

  • Etcheverry, M., Cappa, V., Trelles, J., Zanini, G.: Montmorillonite-alginate beads: natural mineral and biopolymers based sorbent of paraquat herbicides. J. Environ. Chem. Eng. 5, 5868–5875 (2017)

    Article  CAS  Google Scholar 

  • Florence, D.D., Baskaran, R., Sridhar, S., Muthulakshmi, A.: Application of homogenous oxidative methodologies for study of degradation of prototypical textile dyes. Res. J. Pharm. Biol. Chem. Sci. 5, 1022–1026 (2014)

    CAS  Google Scholar 

  • Fradj, A.B., Hamouda, S.B., Ouni, H., Lafi, R., Gzara, L., Hafiane, A.: Removal of methylene blue from aqueous solutions by poly(acrylic acid) and poly(ammonium acrylate) assisted ultrafiltration. Sep. Purif. Technol. 133, 76–81 (2014)

    Article  CAS  Google Scholar 

  • Galindo, C., Jacques, P., Kalt, A.: Photochemical and photocatalytic degradation of an indigoid dye:a case study of acid blue 74 (AB74). J. Photochem. Photobiol. A 141, 47–56 (2001)

    Article  CAS  Google Scholar 

  • Green, F.J.: The sigma-aldrich handbook of stains, dyes and indicators. Aldrich chemical company, Inc., Milwaukee (1991)

    Google Scholar 

  • Ho, Y.S., McKay, G.: Sorption of dyes and copper ions onto biosorbents. Process Biochem. 38, 1047–1061 (2003)

    Article  CAS  Google Scholar 

  • Hua, S., Ma, H., Li, X., Yang, H., Wang, A.: pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int. J. Biol. Macromol. 46, 517–523 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Jain, A.K., Gupta, V.K., Bhatnagar, A.: Utilization of industrial waste products as adsorbents for the removal of dyes. J. Hazard. Mater. 101, 31–42 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Jena, P.R., De, S., Basu, J.K.: A generalized shrinking core model applied to batch adsorption. Chem. Eng. J. 95, 143–154 (2003)

    Article  CAS  Google Scholar 

  • Keller, W.D., Reynolds, R.C., Inoue, A.: Morphology of clay minerals in the smectite-to-Illite conversion series by scanning electron microscopy. Clays Clay Miner. 34, 187–197 (1986)

    Article  Google Scholar 

  • Khalifa, H., El- Sirafy, A.A.: Studies on brilliant green and solochrome red B. I. The acid–base properties. Microchem. J. 18, 554–568 (1973)

    Article  CAS  Google Scholar 

  • Kono, H., Kusumoto, R.: Removal of anionic dyes in aqueous solution by flocculation with cellulose ampholytes. J. Water Process Eng. 7, 83–93 (2015)

    Article  Google Scholar 

  • Kumar, M., Tamilarasan, R.: Kinetics and equilibrium studies on the removal of victoria blue using Prosopis juliflora-modified carbon/Zn/alginate polymer composite beads. J. Chem. Eng. Data 58, 517–527 (2013)

    Article  CAS  Google Scholar 

  • Li, J., Kim, S.Y., Chen, X., Park, H.J.: Calcium-alginate beads loaded with gallic acid: preparation and characterization. LWT Food Sci. Technol. 68, 667–673 (2016)

    Article  CAS  Google Scholar 

  • Lin, Y.B., Fugetsu, B., Terui, N., Tanaka, S.: Removal of organic compounds by alginate gel beads with entrapped activated carbon. J. Hazard. Mater. 120, 237–241 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Wan, Y., Xie, Y., Zhai, R., Zhang, B., Liu, J.: The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem. Eng. J. 187, 210–216 (2012)

    Article  CAS  Google Scholar 

  • McKay, G.: Analytical solution using a pore diffusion model for a pseudoirreversible isotherm for the adsorption of basic dye on silica. AlChE J. 30, 692–697 (1984)

    Article  CAS  Google Scholar 

  • Morshedia, D., Mohammadia, Z., Akbar Boojarb, M.M., Aliakbaria, F.: Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process. Colloids Surf. B 112, 245–254 (2013)

    Article  CAS  Google Scholar 

  • Naiya, T.K., Bhattacharjee, A.K., Sarkar, D., Das, S.K.: Applicability of shrinking core model on the adsorption of heavy metals by clarified sludge from aqueous solution. Adsorption 15, 354–364 (2009)

    Article  CAS  Google Scholar 

  • Oplatowska, M., Donnelly, R.F., Majithiya, R.J., Glenn Kennedy, D., Elliott, C.T.: The potential for human exposure, direct and indirect, to the suspected carcinogenic triphenylmethane dye Brilliant Green from green paper towels. Food Chem. Toxicol. 49, 1870–1876 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Pandey, S., Ramontja, J.: Natural bentonite clay and its composites for dye removal: current state and future potential. Am. J. Chem. Appl. 3, 8–19 (2016)

    CAS  Google Scholar 

  • Peretz, S., Cinteza, O.: Removal of some nitrophenol contaminants using alginate gel beads. Colloids Surf. A 319, 165–172 (2008)

    Article  CAS  Google Scholar 

  • Qiu, Y., Ling, F.: Role of surface functionality in the adsorption of anionic dyes on modified polymeric sorbents. Chemosphere 64, 963–971 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Saif Ur Rehmanb, M., Munira, M., Ashfaqa, M., Rashidc, N., Faizan Nazara, M., Danisha, M., Hanc, J.: Adsorption of Brilliant Green dye from aqueous solution onto red clay. Chem. Eng. J. 228, 54–62 (2013)

    Article  CAS  Google Scholar 

  • Salinas, T., Durruty, I., Arciniegas, L., Pasquevich, G., Lanfranconi, M., Orsi, I., Alvarez, V., Bonanni, S.: Design and testing of a pilot scale magnetic separator for the treatment of textile dyeing wastewater. J. Environ. Manage. 218, 562–568 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Santos, S.C.R., Boaventura, R.A.R.: Adsorption of cationic and anionic azo dyes on sepiolite clay: equilibrium and kinetic studies in batch mode. J. Environ. Chem. Eng. 4, 1473–1483 (2016)

    Article  CAS  Google Scholar 

  • Sarkar, D., Chakrabarti, S., Dutta, B.K.: Diffusion of methylene blue in glass fibers—application of the shrinking core model. Appl. Math. Model. 33, 2874–2881 (2009)

    Article  Google Scholar 

  • Sarkar, D., Bandyopadhyay, A.: Shrinking core model in characterizing aqueous phase dye adsorption. Chem. Eng. Res. Des. 89, 69–77 (2011)

    Article  CAS  Google Scholar 

  • Sicupira, D., Campos, K., Vincent, T., Leao, V., Guibal, E.: Palladium and platinum sorption using chitosan-based hydrogels. Adsorption 16, 127–139 (2010)

    Article  CAS  Google Scholar 

  • Song, D., Park, S.J., Kang, H.W., Park, S.B., Han, J.I.: Recovery of Lithium(I), Strontium(II), and Lanthanum(III) Using Ca–Alginate Beads. J. Chem. Eng. Data 58, 2455–2464 (2013)

    Article  CAS  Google Scholar 

  • Taleb, M.F.A., Hegazy, D.E., Ismail, S.A.: Radiation synthesis, characterization and dye adsorption ofalginate–organophilic montmorillonite nanocomposite. Carbohyd. Polym. 87, 2263–2269 (2012)

    Article  CAS  Google Scholar 

  • Visa, M., Bogatu, C., Duta, A.: Tungsten oxide—fly ash oxide composites in adsorption and photocatalysis. J. Hazard. Mater. 289, 244–256 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Zhang, R., Zouc, L., McClements, D.J.: Protein encapsulation in alginate hydrogel beads: effect of pH on microgel stability, protein retention and protein release. Food Hydrocoll. 58, 308–315 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this work acknowledge CONICET, SeCyT and UNS for the financial support. Language assistance by native English speaker Wendy Walker is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela P. Zanini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dominguez, M.A., Etcheverry, M. & Zanini, G.P. Evaluation of the adsorption kinetics of brilliant green dye onto a montmorillonite/alginate composite beads by the shrinking core model. Adsorption 25, 1387–1396 (2019). https://doi.org/10.1007/s10450-019-00101-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00101-w

Keywords

Navigation