Skip to main content
Log in

Effect of Resin Viscosity in Fiber Reinforcement Compaction in Resin Injection Pultrusion Process

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In resin injection pultrusion, the liquid resin is injected through the injection slots into the fiber reinforcement; the liquid resin penetrates through the fibers as well as pushes the fibers towards the centerplane causing fiber compaction. The compacted fibers are more difficult to penetrate, thus higher resin injection pressure becomes necessary to achieve complete reinforcement wetout. Lower injection pressures below a certain range (depending upon the fiber volume fraction and resin viscosity) cannot effectively penetrate through the fiber bed and thus cannot achieve complete wetout. Also, if the degree of compaction is very high the fibers might become essentially impenetrable. The more viscous the resin is, the harder it is to penetrate through the fibers and vice versa. The effect of resin viscosity on complete wetout achievement with reference to fiber-reinforcement compaction is presented in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jeswani, A.L., Roux, J.A.: Numerical modeling of design parameters for manufacturing polyster/glass composites by resin injection pultrusion. Polym. Polym. Compos. 14, 651–669 (2006)

    CAS  Google Scholar 

  2. Liu, X.L.: A finite element/nodal volume technique for flow simulation of injection pultrusion. Compos. Part A 34, 649–661 (2003)

    Article  Google Scholar 

  3. Liu, X.L.: Iterative and transient numerical models for flow simulation of injection pultrusion. Compos. Struct. 66, 175–180 (2004)

    Article  Google Scholar 

  4. Lee, I.J., Young, W.B., Lin, R.J.: Mold filling and cure modeling of RTM and SRIM processes. Compos. Struct. 27, 109–120 (1993)

    Article  Google Scholar 

  5. Kommu, S., Komanmi, B., Kardos, J.L.: Modeling of injection pultrusion processes: A numerical approach. Polymer Compos. 19, 335–346 (1998)

    Article  CAS  Google Scholar 

  6. Voorakaranam, S., Joseph, B., Kardos, J.L.: Modeling and control of an injection pultrusion process. J. Compos. Mater. 33, 1173–1202 (1999)

    Article  CAS  Google Scholar 

  7. Srinivasagupta, D., Kardos, J.L.: Rigorous dynamic model-based economic design of the injected pultrusion process with controllability considerations. J. Compos. Mater. 37, 1851–1888 (2003)

    Article  Google Scholar 

  8. Srinivasaguta, D., Potaraju, S., Kardos, J.L., Joseph, B.: Steady state and dynamic analysis of a bench-scale injected pultrusion process. Compos. A: Appl. Sci. Manuf. 34, 835–846 (2003)

    Article  Google Scholar 

  9. Mustafa, I., Khomami, B., Kardos, J.L.: 3-D nonisothermal flow simulation model for injected pultrusion processes. AICHE J. 45, 151–163 (1999)

    Article  CAS  Google Scholar 

  10. Rahatekar, S.S., Roux, J.A.: Numerical simulation of pressure variation and resin flow in injection pultrusion. J. Compos. Mater. 37, 1067–1082 (2003)

    Article  Google Scholar 

  11. Ranga, B.K., Roux, J.A., Jeswani, A.L.: Effect of chamber length and pull speed of tapered resin injection pultrusion. J. Reinf. Plast. Compos. 30, 1373–1387 (2011)

    Article  CAS  Google Scholar 

  12. Mitlapalli, R., Roux, J.A., Jeswani, A.L.: Chamber length and injection slot location and multiple slots of tapered resin injection pultrusion. J. Porous Media 14, 17–32 (2011)

    Article  CAS  Google Scholar 

  13. Palikhel, D.R., Roux, J.A., Jeswani, A.L.: Die-attached versus die detached resin injection chamber for pultrusion. J. Appl. Compos. Mater. 20, 55–72 (2013)

    Article  CAS  Google Scholar 

  14. Ranjit, S.: Impact of Design Parameters on Detached-Die Tapered Resin Injection Pultrusion. Masters Thesis, University of Mississippi (2012)

  15. Gutowski, T.G., Cai, Z., Kingery, J., Wineman, S.J.: Resin flow/fiber deformation experiments. SAMPE Q. 17, 54–58 (1986)

    CAS  Google Scholar 

  16. Gutowski, T.G., Cai, Z., Boucher, D., Kingery, J., Wineman, S.: Consolidation experiments for laminate composites. J. Compos. Mater. 21, 650–669 (1987)

    Article  CAS  Google Scholar 

  17. Gutowski, T.G., Morigaki, T., Cai, Z.: Consolidation experiments for laminate composites. J. Compos. Mater. 21, 172–188 (1987)

    Article  CAS  Google Scholar 

  18. Batch, G.L., Cumiskey, S., Macosko, C.W.: Compaction of fiber reinforcements. Polymer Compos. 23, 307–318 (2002)

    Article  CAS  Google Scholar 

  19. Ding, Z., Li, S., Yang, H., Lee, L.J.: Numerical and experimental analysis of resin flow and cure in resin injection pultrusion (RIP). Polym. Compos. 21, 762–778 (2000)

    Article  CAS  Google Scholar 

  20. Kim, Y.R., McCarthy, S.P.: Compressibility and relaxation of fiber reinforcements during composite processing. Polymer Compos. 12, 13–19 (1991)

    Article  Google Scholar 

  21. Kim, Y.R., McCarthy, S.P., Fanucci, J.P., Nolet, S.C., Koppernaes, C.: Resin flow through fiber reinforcement during composite processing. SAMPE Q. 22, 16–22 (1991)

    Google Scholar 

  22. Carman, P.C.: Fluid flow through granular beds. Trans. Int. Chem. Eng. 15, 150–166 (1937)

    CAS  Google Scholar 

  23. Patankar, S.: Numerical Heat and Fluid Flow. Hemisphere Publishing Corporation, New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Roux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakya, N., Roux, J.A. & Jeswani, A.L. Effect of Resin Viscosity in Fiber Reinforcement Compaction in Resin Injection Pultrusion Process. Appl Compos Mater 20, 1173–1193 (2013). https://doi.org/10.1007/s10443-013-9320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9320-0

Keywords

Navigation