Skip to main content
Log in

Asymptotic Periodicity for Flexible Structural Systems and Applications

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We study the existence of pseudo \(S\)-asymptotically \(\omega\)-periodic mild solutions for an abstract version of the damped wave equation \(u''+\alpha u'''=\beta\Delta u +\gamma\Delta u'+f\) which model the vibrations of flexible structures possessing internal material damping and external force \(f\). We show concrete applications of our methods to flexible structures, heat conduction, fractional equations and viscoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The motivation for incorporating \(g\) as an input disturbance in the governing differential equation arises from the fact that very small amount of these, are always present in real materials (see e.g. [32]) as long as the system vibrates.

  2. A measurable set \(C\subseteq[0,\infty)\) is an ergodic zero set if \(\frac{\lambda (C\cap[0,t])}{t}\rightarrow0\), \(t\rightarrow\infty\), where \(\lambda \) denotes the Lebesgue measure.

  3. A continuous function \(f:\mathbb{R}^{+}\times X\rightarrow X\) is called asymptotically almost periodic if it admits a decomposition \(f=g+\phi \), where \(\phi:\mathbb{R}^{+}\times X\rightarrow X\) is a continuous function so that \(\lim_{t\rightarrow\infty}\phi(t,x)=0\) uniformly for \(x\) in any compact subset of \(X\) and \(g\) is almost periodic, that is, \(g\) is a continuous map, and for each \(\epsilon>0\) and any compact \(K\subseteq X\) there exists \(l(\epsilon)>0\) such that every interval \(I\) of length \(l(\epsilon)\) contains a number \(\tau\) with the property that \(\|f(t+\tau,x)-f(t,x)\|\leq\epsilon\) for all \(t\in \mathbb{R}\), \(x\in K\).

  4. A continuous function \(u:\mathbb {R}^{+}\rightarrow X\) satisfying the integral equation \(u(t)=\alpha\mathcal{R}(t)z+\int_{0}^{t}\mathcal {R}(t-s)f(s,u(s),u'(s))ds\), \(\forall t\geq0\), where \(z\in D(A)\) is called a mild solution to the problem (3.6)–(3.7) (see [10]).

  5. \(PAP_{0}(X)=\{\phi\in C_{b}([0,\infty );X):\lim_{T\rightarrow\infty}\frac{1}{T}\int^{T}_{0}\|\phi(t)\| _{X}dt=0\}\). It is well known that a function \(u\) belongs to \(PAP_{0}(X)\) if and only if for each \(\epsilon>0\), the set \(C_{\epsilon}=\{t\in [0,\infty): \|u(t)\|_{X}\geq\epsilon\}\) is an ergodic zero set (see [93]).

  6. The existence of the pseudo S-asymptotically \(\omega\)-periodic solution is obtained through the Banach fixed point theorem and this theorem does give uniqueness in the space where the fixed point argument is set. In this case the space is the ball \(B_{r}(PSAP_{\omega}^{0}(X))\), which is not the total space. This is the reason why uniqueness is not obtained. One may wonder whether is there any example where uniqueness of \(PSAP_{\omega}^{0}(X)\) solutions does not hold? Unfortunately we do not known the answer.

  7. See [25].

  8. \(\overline{\mathit{co}(E)}\) denotes the closure of the convex hull of \(E\). As the name suggests the convex hull is always convex. It is the smallest convex set that contain \(E\).

  9. To be more precise, recall that a continuous function \(f:[0,\infty)\times X\rightarrow X\) is called uniformly continuous on bounded sets of \(X\) if for every \(\varepsilon>0\) and every bounded subset \(K\) of \(X\) there is \(\delta=\delta_{\varepsilon,K}>0\) such that \(\|f(t,x)-f(t,y)\|_{X}\leq\varepsilon\) for all \(t\geq0\) and all \(x,y\in K\) so that \(\|x-y\|_{X}\leq\delta\). This definition coming essentially from [1].

  10. To see this, let \(\varepsilon\) be any positive real number, put \(\rho:=M(\alpha+1)\| y\|_{X}+\alpha M\|z\|_{X}+\sigma\). Since \(f\) is uniformly continuous on bounded sets of \(X\), there is \(\delta>0\) such that \(\|f(t,x)-f(t,y)\| _{X}\leq\frac{\mu}{M}\varepsilon\) for all \(t\geq0\) and \(\|x-y\| _{X}\leq\delta\) with \(\|x\|_{X}\leq\rho\), and \(\|y\|_{X}\leq\rho\). We can choose \(n_{0}\in\mathbb{N}\) such that for each \(n\geq n_{0}\) implies \(\|u_{n}-u\|_{C_{b}([0,\infty);X)}<\delta\). From this we immediately get \(\|\varLambda^{\odot}u^{n}-\varLambda^{\odot}u\|_{\infty}\leq\varepsilon\).

  11. That is, for each \(T>0\) the functions in \(\varLambda^{\odot}(B_{\sigma}(C_{b}^{0}))\) restricted to the domain \([0,T]\) are equicontinuous. We see that some authors would call this equicontinuity, not local equicontinuity (see [25]).

  12. A function \(u:[0,1]\rightarrow X\) is called a mild solution of (3.29)–(3.30) if it satisfies the integral equation

    $$ u(t)=\alpha\mathcal{R}(t)g(u)+ \int_{0}^{t}\mathcal {R}(t-s)f\bigl(s,u(s),u'(s) \bigr)ds,\quad t\in[0,1]. $$
  13. As the name suggests, measure of noncompactness give an idea of the “lack of compactness” of a given set or operator. Such situation arises in many fields: integral equations with strongly singular kernels, non-linear superposition operators between various function spaces and much more (see [9]).

  14. \(f(\cdot,x,y)\) is mensurable for all \(x,y\in X\) and \(f(t,\cdot):X\times X\rightarrow X\) is continuous for all \(t\in[0,1]\).

  15. We note that similar conditions to those made in Theorem 3.8 where previous considered in the literature (cf. [86]).

  16. The equicontinuity of the set \(\widetilde {\varLambda}(\mathcal{B})'\) is a consequence of the following decomposition

    $$\begin{aligned} (\widetilde{\varLambda}u )'(t+s)- (\widetilde{\varLambda }u )'(t) = & \alpha \bigl(\mathcal{R}'(t+s)-\mathcal {R}'(t) \bigr)g(u) + \int_{t}^{t+s}\mathcal{R}'(t+s-\xi)f \bigl(\xi,u(\xi),u'(\xi)\bigr)d\xi \\ &{}+ \int_{0}^{t} \bigl(\mathcal{R}'(t+s- \xi)-\mathcal{R}'(t-\xi) \bigr)f\bigl(\xi,u(\xi),u'( \xi)\bigr)d\xi, \quad u\in\mathcal{B}. \end{aligned}$$
  17. To handle it, we suppose that (3.35) holds. One can show that

    $$\begin{aligned} \xi \bigl(\widetilde{\varLambda}^{n+1}(\mathcal{B})'(t) \bigr) \leq &M_{\mathcal{R}\mathcal{R}'} \int_{0}^{t}H(s)\xi \bigl(\widetilde { \varLambda}^{n}(\mathcal{B})'(s) \bigr)ds \\ \leq& \Biggl(\sum_{j=0}^{n}C_{j}^{n}a^{n+1-j} \frac{(bt)^{j}}{j!} \Biggr)\widehat{\xi}(\mathcal{B}) + \Biggl(\sum _{j=1}^{n+1}C_{j+1}^{n}a^{n+1-j} \frac{(bt)^{j}}{j!} \Biggr)\widehat{\xi}(\mathcal{B}) \\ = & \Biggl(a^{n+1}+\sum_{j=1}^{n} \bigl(C_{j-1}^{n}+C_{j}^{n} \bigr)a^{n+1-j}\frac {(bt)^{j}}{j!}+\frac{(bt)^{n+1}}{(n+1)!} \Biggr)\widehat{\xi}( \mathcal {B}) \\ = & \Biggl(\sum_{j=0}^{n+1}C_{j}^{n+1}a^{n+1-j} \frac {(bt)^{j}}{j!} \Biggr)\widehat{\xi}(\mathcal{B}). \end{aligned}$$
  18. The case \(\lambda=0\) is the so called Voigt model of viscoelasticity (see [53]).

  19. We denote by \(H^{m}(\varOmega)\) the Sobolev space of functions which are in \(L^{2}(\varOmega)\), together with all their derivatives of order \(\leq m\). \(H_{0}^{1}(\varOmega)\) is the Hilbert subspace of \(H^{1}(\varOmega)\), made of functions vanishing on \(\partial\varOmega\).

  20. It follows from the Poincare’s inequality [19]

    $$ \|\alpha\mathcal{R}(t)z\|_{L^{2}(\varOmega)}\leq\|v\|_{L^{2}(\varOmega )}+\lambda \|u'\|_{L^{2}(\varOmega)} \leq C_{v}\|\nabla v \|_{L^{2}(\varOmega)} + C_{u'}\lambda\|\nabla u' \|_{L^{2}(\varOmega)} \leq N^{*}(C_{v}+\lambda C_{u'})e^{-\mu t} $$

    and \(\|\alpha\mathcal{R}'(t)z\|_{L^{2}(\varOmega)} = \|u'(t)\|_{L^{2}(\varOmega)} \leq C_{u'}\|\nabla u'\|_{L^{2}(\varOmega)} \leq C_{u'}N^{*}e^{-\mu t}\). Using the preceding estimates and the uniform boundedness principle we have that \(\mathcal{R}(t)\) satisfies (4.3).

  21. \(W^{m,2}(\varOmega)=H^{m}(\varOmega)\).

  22. The following estimate is responsible for the fact that \(\widetilde{K}\) is relatively compact in \(L^{2}(\varOmega)\),

    $$ \sup_{t\leq0,\|\varphi\|_{L^{2}(\varOmega)}\leq r}\|f(t,\varphi)\| _{W^{1,2}(\varOmega)}\leq\|L \|_{C_{b}([0,\infty);\mathbb{R})} \bigl(\varPsi \bigl(v(\varOmega)^{1/2}r\bigr)+|g(0)| \bigr)\|\varPhi_{0}\|_{W^{1,2}(\varOmega)}. $$
  23. The resolvent is used to obtain a variation of parameters formula. In the convolution case it is quite effective for dealing with perturbations because it employs the solution of the unforced equation about which we frequently know a great deal. The non convolution case presents many difficulties. One is often inclined to believe that more progress can be made by attacking the original equation directly without going through a variation of parameters argument. In the case of an integro-differential equation, one may use differential inequalities and Liapunov functional to bypass the resolvent (see [20]).

  24. \(S_{\omega}(\mathbb{R})\) denotes the subspace of \(C_{b}([0,\infty);\mathbb{R})\) formed for all the functions \(u(\cdot)\) such that \(\lim_{t\rightarrow\infty }(u(t+n\omega)-u(t))=0\), uniformly for \(n\in\mathbb{N}\) endowed with the norm of the uniform convergence. It is easy to see that \(S_{\omega}(\mathbb{R})\) is a closed subspace of \(C_{b}([0,\infty);\mathbb{R})\). If \(u\in S_{\omega}(\mathbb{R})\) it follows from [61] that \(u\) is asymptotically \(\omega\)-periodic.

  25. We notice that

    $$\begin{aligned} \varGamma f(t+n\omega)-\varGamma f(t) =& \int_{0}^{n\omega}R(t+n\omega -s)f(s)ds+ \int_{0}^{L}R(t-s) \bigl(f(s+n\omega)-f(s)\bigr)ds\\ &{}+ \int _{L}^{t}R(t-s) \bigl(f(s+\omega)-f(s)\bigr)ds. \end{aligned}$$
  26. Note that \(\lim_{t\rightarrow \infty}\frac{(t+\omega)^{3/2}-t^{3/2}}{t}=\lim_{t\rightarrow\infty }\frac{3t^{2}\omega+3t\omega^{2}+\omega^{3}}{t^{5/2}}\frac{1}{ (1+\frac{\omega}{t} )^{3/2}+1}=0\).

  27. In writing the function \(q\) is assumed for simplicity and without loss of generality that the history of the temperature \(u\) is prescribed as zero for \(t<0\). For details and references to the underlying physical theory, we refer the reader to Nohel [83].

  28. For any \(T>0\) we have the critical property that \(\int _{0}^{T}C(s)ds<\infty\). \(C(t)\) is completely monotone on \((0,\infty)\) in the sense that \((-1)^{k}C^{(k)}(t)\geq0\) for \(k=0,1,2,\ldots \) and \(t\in (0,\infty)\).

  29. Note that \(R\) satisfies \(0\leq R(t)\leq C(t)\) for all \(t>0\), so \(R(t)\rightarrow0\) as \(t\rightarrow \infty\). Since \(C \notin L^{1}[0,\infty)\) we get \(\int_{0}^{\infty}R(s)ds=1\). By [78, Theorem 7.2] we can see that \(R\) is a completely monotone function on \(0< t<\infty\).

  30. The Stojanovic and Gorenflo’s method used in [90] is based on the successive application of the Laplace and Fourier transform in order to arrive to a linear Abel Volterra type equation. The Gronwall’s inequality yields the super viscosity solution assuming a Lipschitz condition for the force term.

  31. See [67, Example 6.1], and [34, Example 3.8].

  32. Let \(\{ T(t)\}_{t\geq0}\subseteq\mathcal{B}(X)\) be a strongly mensurable family of operators, i.e. \(T(t)x\) is Bochner-mensurable in \(X\), for each \(x\in X\). Then \(T(t)\) is called uniformly integrable if \(T(\cdot )\in L^{1}(\mathbb{R}^{+},\mathcal{B}(X))\).

  33. If we assume that \(\beta(t)\equiv0\), then (4.69) is the equation governing one-dimensional longitudinal motions of a viscoelastic bar with density 1 (see [60]).

  34. Properties of the solutions of Eq. (4.76) have been studied in several contexts, for example well-posedness [45, 57], mild solutions [8, 71], and asymptotic periodicity [26, 43, 47, 48].

  35. See Sect. 4.2 for the definition of \(S_{\omega}(X)\). Note that we must to change \(X\) instead of ℝ.

  36. The elastic materials store all the energy due to deformation. However viscoelastic materials do not store all the energy under deformation, actually dissipate some of this energy. The ability to dissipate energy is one of the main reasons for using viscoelastic materials for isolating vibration, dampening noise, and absorbing shock(pertinent references in this regard are [17, 32, 51, 75]).

  37. Which means that \(S(t)D(A)\subseteq D(A)\) and \(AS(t)x=S(t)Ax\) for all \(x\in D(A)\) and \(t\geq0\).

  38. Recall that a resolvent family \(\{S(t)\}_{t\geq0}\) is called uniformly stable if \(\lim_{t\rightarrow\infty}\|S(t)\| _{\mathcal{B}(X)}=0\).

  39. Let \(a\in L^{1}_{loc}(\mathbb{R}^{+})\) be of subexponential growth and \(k\in\mathbb{N}\), the function \(a(t)\) is called \(k\)-regular if there is a constant \(c>0\) such that \(|\lambda^{n}\hat {a}^{n}(\lambda)|\leq c|\hat{a}(\lambda)|\) for all \(\operatorname{Re}(\lambda)>0\) and \(1\leq n\leq k\).

  40. We observe that from parabolicity and 1-regularity of \(a(t)\) we have by [87, Theorem 3.1] the existence of a resolvent family \(S(t)\), continuous and bounded for \(t\geq0\), hence \(S(\cdot)\in L^{1}_{loc}(\mathbb{R}^{+},\mathcal {B}(X))\).

  41. The condition \(\nabla\circ u=0\) means that the fluid is homogeneous and incompressible. In this case we call \(u\) divergence-free or solenoidal.

  42. By [89, Lemma 2.5.3] we get \(L^{2}_{0}(\varOmega;\mathbb{R}^{n})=\{f\in L^{2}(\varOmega; \mathbb{R}^{n}):\nabla\circ f=0, N\cdot f\mid_{\partial\varOmega}=0\} \), \(N\cdot f\mid_{\partial\varOmega}\) means the generalized trace.

  43. Note that \(P\nabla p=0\) by the definition of \(P\) and \(\int_{0}^{t}\int_{0}^{s}\Delta u(s-\tau,x)da(\tau)ds=\int _{0}^{t}a(t-\tau)\Delta u(\tau,x)d\tau\).

References

  1. Agarwal, R.P., de Andrade, B., Cuevas, C.: On type of periodicity and ergodicity to a class of fractional order differential equations. Adv. Differ. Equ. 2010, Article ID 179750, 25 pp. (2010). doi:10.1155/2010/179750

  2. Agarwal, R.P., de Andrade, B., Cuevas, C.: Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations. Nonlinear Anal., Real World Appl. 11, 3532–3554 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agarwal, R.P., Cuevas, C., Soto, H., El-Gebeily, M.: Asymptotic periodicity for some evolution equation in Banach spaces. Nonlinear Anal. 74, 1769–1798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agarwal, R.P., de Andrade, B., Cuevas, C., Henríquez, E.: Asymptotic periodicity for some classes of integro-differential equations and applications. Adv. Math. Sci. Appl. 21(1), 1–31 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Agarwal, R.P., Cuevas, C., Frasson, M.: Semilinear functional difference equations with infinite delay. Math. Comput. Model. 55(3–4), 1083–1105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Agarwal, R.P., Cuevas, C., Lizama, C.: Regularity of Difference Equations on Banach Spaces. Springer, Berlin (2014). ISBN 978-3-319-06446-8, ISBN 978-3-319-06447-5 (eBook), 232 pp. doi:10.1007/978-3-319-06447-5

    Book  MATH  Google Scholar 

  7. Ahn, V.V., Mcvinish, R.: Fractional differential equations driven by Levy noise. J. Appl. Math. Stoch. Anal. 16(2), 97–119 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aizicovici, S., Mckibben, M.: Existence results for a class of abstract nonlocal Cauchy problems. Nonlinear Anal. 39, 649–668 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Appell, J.: Measure of noncompactness, condensing operators and fixed points: An application-oriented survey. Fixed Point Theory 6(2), 157–229 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Araya, D., Lizama, C.: Existence of asymptotically almost automorphic solutions for a third order differential equation. Electron. J. Qual. Theory Differ. Equ. 53, 1 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arendt, W., Prüss, J.: Vector-valued Tauberian theorem and asymptotic behavior of linear Volterra equations. SIAM J. Math. Anal. 23(2), 412–448 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transform and Cauchy Problems. Monographs in Mathematics, vol. 96. Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  13. Arendt, W., Batty, C., Bu, S.: Fourier multiplier for Hölder continuous functions and maximal regularity. Stud. Math. 160(1), 23–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Balas, M.J.: Active control of flexible systems. J. Optim. Theory Appl. 25(3), 415–436 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Balas, M.J.: Feedback control of flexible systems. IEEE Trans. Autom. Control 23, 673–679 (1978)

    Article  MATH  Google Scholar 

  16. Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lectures Notes in Pure and Applied Mathematics, vol. 60. Dekker, New York (1980)

    MATH  Google Scholar 

  17. Bland, D.R.: The Theory of Linear Viscoelasticity. Pure and Applied Mathematics, vol. 10. Pergamon Press, New York (1960)

    MATH  Google Scholar 

  18. Bose, S.K., Gorain, G.C.: Stability of the boundary stabilised internally damped wave equation \(y''+\lambda y'''=c^{2}(\Delta y+\mu\Delta y')\) in a bounded domain in \(\mathbb{R}^{n}\). Indian J. Math. 40(1), 1–15 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  20. Burton, T.A.: Volterra Integral and Differential Equations. Mathematics in Science and Engineering, vol. 202, 2nd edn. Elsevier, Amsterdam (2005). ISBN 0-444-51786-3

    MATH  Google Scholar 

  21. Burton, T.A.: Fractional differential equations and Liapunov functional. Nonlinear Anal. 74, 5648–5662 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Burton, T.A.: Fractional equations and a theorem of Brouwer-Schauder type. Fixed Point Theory 14(1), 91–96 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Burton, T.A.: Correction of “Fractional equation and a theorem of Brouwer-Schauder type”. Fixed Point Theory (2013, to appear)

  24. Burton, T.A., Zhang, B.: Fixed points and fractional differential equations: Examples. Fixed Point Theory 14(2), 313–326 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Burton, T.A., Zhang, B.: A Schauder-type fixed point theorem. J. Math. Anal. Appl. 417, 552–558 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Caicedo, A., Cuevas, C., Henríquez, H.: Asymptotic periodicity for a class of partial integrodifferential equations. ISRN Math. Anal. 2011, Article ID 537890, 18 pp. (2011). doi:10.5402/2011/537890

  27. Chabrowski, J.: On nonlocal problems for parabolic equations. Nagoya Math. J. 93, 109–131 (1984)

    MathSciNet  MATH  Google Scholar 

  28. Chen, C.: Control and stabilization for the wave equation in a bounded domain. SIAM J. Control Optim. 17(1), 66–81 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, G., Zhou, J.: The wave propagation method for the analysis of boundary stabilization in vibrating structures. SIAM J. Appl. Math. 50, 1254–1283 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chill, R., Srivastava, S.: \(L^{p}\)-Maximal regularity for second order Cauchy problems. Math. Z. 251, 751–781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chou, J.H., Chen, S.H., Chas, C.H.: Robust stabilization of flexible structural systems under noise uncertainties and time-varying parameter perturbations. J. Vib. Control 4, 167–185 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Christensen, R.M.: Theory of Viscoelasticity, 2nd edn. Academic Press, New York (1982)

    Google Scholar 

  33. Consiglio, A.: Risoluzione di una equazione integrale non lineare presentasi in un problema di turbalenza. Acad. Gioenia Sci. Nat. Cantania 4(XX), 1–13 (1940)

    MathSciNet  MATH  Google Scholar 

  34. Cuevas, C., de Souza, J.C.: Existence of S-asymptotically \(\omega\)-periodic solutions for fractional order functional integro-differential equations with infinite delay. Nonlinear Anal. 72, 1683–1689 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cuevas, C., Lizama, C.: Almost automorphic solutions to integral equations on the line. Semigroup Forum 79, 461–472 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cuevas, C., Lizama, C.: Well posedness for a class of flexible structure in Hölder spaces. Math. Probl. Eng. 2009, Article ID 358329, 13 pp. (2009). doi:10.1155/2009/358329

  37. Cuevas, C., Lizama, C.: S-asymptotically \(\omega\)-periodic solutions for semilinear Volterra equations. Math. Methods Appl. Sci. 33, 1628–1636 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Cuevas, C., Lizama, C.: Existence of S-asymptotically \(\omega\)-periodic solutions for two-times fractional order differential equations. Southeast Asian Bull. Math. 37, 683–690 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Cuevas, C., Sepulveda, A., Soto, H.: Almost periodic and pseudo-almost periodic solutions to fractional differential and integro-differential equations. Appl. Math. Comput. 218, 1735–1745 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Cuevas, C., Henríquez, H., Soto, H.: Asymptotically periodic solutions of fractional differential equations. Appl. Math. Comput. 236, 524–545 (2014)

    MathSciNet  MATH  Google Scholar 

  41. de Andrade, B., Cuevas, C.: S-asymptotically \(\omega\)-periodic and asymptotically \(\omega\)-periodic solutions to semi-linear Cauchy problems with nondense domain. Nonlinear Anal. 72, 3190–3208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. de Andrade, B., Lizama, C.: Existence of asymptotically almost periodic solutions for damped wave equations. J. Math. Anal. Appl. 382, 761–771 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. de Andrade, B., Cuevas, C., Henríquez, E.: Asymptotic periodicity and almost automorphy for a class of Volterra integro-differential equations. Math. Methods Appl. Sci. 35, 795–811 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179, 630–637 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Desch, W., Grimmer, R.C., Schappacher, W.: Well-posedness and wave propagation for a class of integrodifferential equations in Banach space. J. Differ. Equ. 74(2), 391–411 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  46. Desh, W., Grimmer, R., Schappacher, W.: Some considerations for linear integrodifferential equations. J. Math. Anal. Appl. 104, 219–234 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ding, H.S., Xiao, T.J., Liang, J.: Asymptotically almost automorphic solutions for some integrodifferential equations with nonlocal initial conditions. J. Math. Anal. Appl. 338, 141–151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ding, H.S., Liang, J., Xiao, T.J.: Pseudo almost periodic solutions to integro-differential equations of heat conduction in materials with memory. Nonlinear Anal., Real World Appl. 13, 2659–2670 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Fernández, C., Lizama, C., Poblete, V.: Maximal regularity for flexible structural systems in Lebesgue spaces. Math. Probl. Eng. 2010, Article ID 196956, 15 pp. (2010). doi:10.1155/2010/196956

  50. Fernández, C., Lizama, C., Poblete, V.: Regularity of solutions for a third order differential equation in Hilbert spaces. Appl. Math. Comput. 217(21), 8522–8533 (2011)

    MathSciNet  MATH  Google Scholar 

  51. Flügge, W.: Viscoelasticity, 2nd edn. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  52. Giga, Y., Sohr, H.: On the Stokes operator in exterior domain. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 36, 103–130 (1989)

    MathSciNet  Google Scholar 

  53. Gorain, G.C.: Exponential energy decay estimate for the solutions of internally damped wave equation in a bounded domain. J. Math. Anal. Appl. 216, 510–520 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. Gorain, G.C.: Uniform stabilization of n-dimensional vibrating equation modeling ‘standard linear model’ of viscoelasticity. Appl. Appl. Math. 4(2), 314–328 (2009)

    MathSciNet  MATH  Google Scholar 

  55. Gorain, G.C., Bose, S.K.: Exact controllability and boundary stabilization of torsional vibrations of an internally damped flexible space structure. J. Optim. Theory Appl. 99(2), 423–442 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Gorain, G.C., Bose, S.K.: Exact controllability and boundary stabilization of flexural vibrations of an internally damped flexible space structure. Appl. Math. Comput. 126, 341–360 (2002)

    MathSciNet  MATH  Google Scholar 

  57. Grimmer, R.C.: Resolvent operators for integral equations in a Banach space. Trans. Am. Math. Soc. 273(1), 333–349 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  58. Grimmer, R., Liu, J.H.: Limiting equations of integrodifferential equations in Banach space. J. Math. Anal. Appl. 188, 78–91 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  59. Gripenberg, G., Londen, S.O., Staffans, O.: Volterra Integral and Functional Equations, vol. 34. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  60. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  61. Henríquez, H., Pierri, M., Táboas, P.: On S-asymptotically \(\omega\)-periodic functions on Banach spaces and applications. J. Math. Anal. Appl. 343(2), 1119–1130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Henríquez, H., Pierri, M., Táboas, P.: Existence of S-asymptotically \(\omega\)-periodic solutions for abstract neutral equations. Bull. Aust. Math. Soc. 78, 365–382 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. Henríquez, H., Cuevas, C., Caicedo, A.: Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Commun. Pure Appl. Anal. 12(5), 2031–2068 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  64. Kaltenbacher, B., Lasiecka, I., Marchand, R.: Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equations arising in high intensity ultrasound. Control Cybern. 40(4), 971–988 (2011)

    MathSciNet  MATH  Google Scholar 

  65. Kaltenbacher, B., Lasiecka, I., Pospieszalska, M.K.: Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound. Math. Models Methods Appl. Sci. 22(11), 1250035 (2012) (34 pp.). doi:10.1142/S0218202512500352

    Article  MathSciNet  MATH  Google Scholar 

  66. Kerefov, A.A.: Non-local boundary value problems for parabolic equation. Differ. Uravn. (Minsk) 15, 52–55 (1979)

    MathSciNet  MATH  Google Scholar 

  67. Keyantuo, V., Lizama, C., Warma, M.: Asymptotic behavior of fractional order semilinear evolution equations. Differ. Integral Equ. 26(7–8), 757–780 (2013)

    MathSciNet  MATH  Google Scholar 

  68. Kirk, C.M., Olmstead, W.E.: Blow-up in a reactive-diffusive medium with a moving heat source. Z. Angew. Math. Phys. 53, 147–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  69. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cottenham (2009)

    MATH  Google Scholar 

  70. Liang, J., Xiao, T.J.: Semilinear integrodifferential equations with nonlocal initial conditions. Comput. Math. Appl. 47, 863–875 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  71. Liang, J., van Casteren, J., Xiao, T.J.: Nonlocal Cauchy problems for semilinear evolution equations. Nonlinear Anal. 50, 173–189 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  72. Liu, L., Guo, F., Wu, C., Wu, Y.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces. J. Math. Anal. Appl. 309, 638–649 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  73. Lizama, C.: Regularized solutions for abstract Volterra equations. J. Math. Anal. Appl. 243, 278–292 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  74. Lizama, C., Vergara, V.: Uniform stability of resolvent families. Proc. Am. Math. Soc. 132(1), 175–181 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  75. Mainardi, F. (ed.): Wave Propagation in Viscoelastic Media. Research Notes Math., vol. 52. Pitman, London (1982)

    MATH  Google Scholar 

  76. Mann, W.R., Wolf, F.: Heat transfer between solids and gases under nonlinear boundary conditions. Q. Appl. Math. 9, 163–184 (1951)

    MathSciNet  MATH  Google Scholar 

  77. Martin, R.H.: Nonlinear Operators and Differential Equations in Banach Spaces. Krieger, Florida (1987)

    Google Scholar 

  78. Miller, R.K.: Nonlinear Volterra Integral Equations. Benjamin, Elmsford (1971)

    MATH  Google Scholar 

  79. Miller, R.K.: An integrodifferential equation for rigid heat conductors with memory. J. Math. Anal. Appl. 66, 313–332 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  80. Navier, C.L.: Mémoire sur les lois du mouvement des fluides. Mém. Acad. Sci. Inst. Fr. 6, 389–440 (1827)

    Google Scholar 

  81. N’Guérékata, G.M.: Almost Automorphic and Almost Periodic Functions in Abstract Spaces. Kluwer Academic, New York (2001)

    Book  MATH  Google Scholar 

  82. Nicholson, R.S., Shain, I.: Theory of stationary electrode polography. Anal. Chem. 36, 706–723 (1964)

    Article  Google Scholar 

  83. Nohel, J.A.: Nonlinear Volterra equations for heat flow in material with memory. In: Herdman, T.L., Rankin, S.M. III, Stech, H.W. (eds.) Integral and Functional Differential Equations. Lecture Notes in Pure and Applied Mathematics, vol. 67, pp. 3–82. Dekker, New York (1981)

    Google Scholar 

  84. Padmavally, K.: On a nonlinear integral equation. J. Math. Mech. 7, 533–555 (1978)

    MathSciNet  MATH  Google Scholar 

  85. Pierri, M., Rolnik, V.: On pseudo S-asymptotically \(\omega\)-periodic functions. Bull. Aust. Math. Soc. 87(2), 238–254 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  86. Pozo, J.: Regularity and qualitative properties for solutions of some evolution equations. Ph.D. thesis, University of Chile, Chile (2013)

  87. Prüss, J.: Evolutionary Integral Equations and Applications. Monographs Math., vol. 87. Birkhäuser, Basel (1993)

    MATH  Google Scholar 

  88. Roberts, J.H., Mann, W.R.: On a certain nonlinear integral equation of the Volterra type. Pac. J. Math. 1, 431–445 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  89. Sohr, H.: The Navier-Stokes Equations, an Elementary Functional Analytic Approach. Birkhaüser, Basel (2001)

    MATH  Google Scholar 

  90. Stojanović, M., Gorenflo, R.: Nonlinear two-term time fractional diffusion-wave problem. Nonlinear Anal., Real World Appl. 11(5), 3512–3523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  91. Temam, R.: The Navier-Stokes Equation. North-Holland, Amsterdam (1975)

    MATH  Google Scholar 

  92. Vabishchevich, P.N.: Nonlocal parabolic problems and the inverse heat-conduction problem. Differ. Uravn. 17, 1193–1199 (1981)

    MathSciNet  Google Scholar 

  93. Zhang, C.: Almost Periodic Type Functions and Ergodicity. Kluwer Academic, Norwell (2003)

    Book  MATH  Google Scholar 

  94. Zhang, X., Lin, L.S., Wu, C.X.: Global solutions of nonlinear second-order impulsive integro-differential equations of mixed type in Banach spaces. Nonlinear Anal. 67, 2335–2349 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to professor T.A. Burton for supplying references [23, 25] concerning recent work, which enable us to make Remark 3.11 and Sect. 4.3. This subsection was written during a visit of C. Cuevas to State University of Campinas (UNICAMP). C. Cuevas is grateful to professor Lucas Ferreira for its generous hospitality. This work was completed when C. Cuevas and C. Silva were visiting the University of La Frontera, Temuco, Chile. They are grateful to the Evolution Equations and Applications Group and the Department of Mathematics and Statistics for providing a stimulating atmosphere to work. B. de Andrade and C. Cuevas are partially financed by CNPQ/Brazil under Grant 478053/2013-4. C. Silva has been supported by CNPQ/Brazil. H. Soto is partially financed by DIUFRO under Grant DI15-0050. The authors are very grateful to the referee for pointing out omissions and providing nice comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Cuevas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade, B., Cuevas, C., Silva, C. et al. Asymptotic Periodicity for Flexible Structural Systems and Applications. Acta Appl Math 143, 105–164 (2016). https://doi.org/10.1007/s10440-015-0032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-015-0032-3

Keywords

Navigation