Skip to main content
Log in

Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we investigate the asymptotic validity of boundary-layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl’s boundary-layer solution to Navier-Stokes solutions with different Reynolds numbers. We show how Prandtl’s solution develops a finite-time separation singularity. On the other hand, the Navier-Stokes solutions are characterized by the presence of two distinct types of viscous-inviscid interactions that can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover, we apply the complex singularity-tracking method to Prandtl and Navier-Stokes solutions and analyze the previous interactions from a different perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beirão da Veiga, H., Crispo, F.: Sharp inviscid limit results under Navier type boundary conditions. An L p theory. J. Math. Fluid Mech. 12, 397–411 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beirão da Veiga, H., Crispo, F.: Concerning the W k,p-inviscid limit for 3-D flows under a slip boundary condition. J. Math. Fluid Mech. 13, 117–135 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beirão da Veiga, H., Crispo, F.: The 3D inviscid limit result under slip boundary conditions. A negative answer. J. Math. Fluid Mech. 14, 55–59 (2012)

    Article  MathSciNet  Google Scholar 

  4. Caflisch, R., Sammartino, M.: Navier-Stokes equations on an exterior circular domain: construction of the solution and the zero viscosity limit. C. R. Acad. Sci., Ser. 1 Math. 324, 861–866 (1997)

    MATH  MathSciNet  Google Scholar 

  5. Cannone, M., Lombardo, M., Sammartino, M.: Existence and uniqueness for the Prandtl equations. C. R. Acad. Sci., Ser. 1 Math. 332, 277–282 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Cannone, M., Lombardo, M., Sammartino, M.: Well-posedness of Prandtl equations with non-compatible data. Nonlinearity 26, 3077–3100 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cassel, K.: A comparison of Navier-Stokes solutions with the theoretical description of unsteady separation. Philos. Trans. R. Soc. Lond. A 358, 3207–3227 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cassel, K., Obabko, A.: A Rayleigh instability in a vortex-induced unsteady boundary layer. Phys. Scr. 2010, 014006 (2010)

    Article  Google Scholar 

  9. Clopeau, T., Mikelic, A., Robert, R.: On the vanishing viscosity limit for the 2d incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity 11, 1625–1636 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Coclite, G., Gargano, F., Sciacca, V.: Analytic solutions and singularity formation for the Peakon b-Family equations. Acta Appl. Math. 122, 419–434 (2012)

    MATH  MathSciNet  Google Scholar 

  11. Constantin, P., Kukavica, I., Vicol, V.: On the inviscid limit of the Navier-Stokes equations (2014). arXiv:1403.5748v1

  12. Della Rocca, G., Lombardo, M., Sammartino, M., Sciacca, V.: Singularity tracking for Camassa-Holm and Prandtl’s equations. Appl. Numer. Math. 56, 1108–1122 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gargano, F., Sammartino, M., Sciacca, V.: Singularity formation for Prandtl’s equations. Phys. D, Nonlinear Phenom. 238, 1975–1991 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gargano, F., Sammartino, M., Sciacca, V.: High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex. Comput. Fluids 52, 73–91 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gargano, F., Sammartino, M., Sciacca, V., Cassel, K.: Analysis of complex singularities in high-Reynolds-number Navier–Stokes solutions. J. Fluid Mech. 747, 381–421 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gerard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23, 591–609 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gerard-Varet, D., Nguyen, T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77, 71–88 (2012)

    MATH  MathSciNet  Google Scholar 

  18. Iftimie, D., Planas, G.: Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity 19, 899–918 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kato, T.: Remarks on the Zero Viscosity Limit for Nonstationary Navier-Stokes Flows with Boundary, vol. 2. Springer, New York (1984)

    Google Scholar 

  20. Kelliher, J.: Navier-Stokes equations with Navier boundary conditions for bounded domain in the plane. J. Math. Anal. 38, 210–232 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kelliher, J.: On Kato’s conditions for vanishing viscosity. Indiana Univ. Math. J. 56, 1711–1721 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Klein, C., Roidot, K.: Numerical study of shock formation in the dispersionless Kadomtsev–Petviashvili equation and dispersive regularizations. Phys. D, Nonlinear Phenom. 265, 1–25 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Klein, C., Roidot, K.: Numerical study of the long wavelength limit of the Toda lattice (2014). arXiv:1404.2593

  24. Kramer, W., Clercx, H., van Heijst, G.: Vorticity dynamics of a dipole colliding with a no-slip wall. Phys. Fluids 19, 126603 (2007)

    Article  Google Scholar 

  25. Kukavica, I., Vicol, V.: On the local existence of analytic solutions to the Prandtl boundary layer equations. Commun. Math. Sci. 11, 269–292 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lamb, H.: Hydrodynamics. Cambridge Mathematical Library, 6th edn. Cambridge University Press, Cambridge (1993). With a foreword by R.A. Caflisch (Russel E. Caflisch)

    MATH  Google Scholar 

  27. Lombardo, M., Caflisch, R., Sammartino, M.: Asymptotic analysis of the linearized Navier-Stokes equation on an exterior circular domain: explicit solution and the zero viscosity limit. Commun. Partial Differ. Equ. 26, 335–354 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lombardo, M., Cannone, M., Sammartino, M.: Well-posedness of the boundary layer equations. SIAM J. Math. Anal. 35, 987–1004 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lopes Filho, M., Mazzucato, A., Nussenzveig Lopes, H.: Vanishing viscosity limit for incompressible flow inside a rotating circle. Phys. D, Nonlinear Phenom. 237, 1324–1333 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lopes Filho, M., Mazzucato, A., Nussenzveig Lopes, H., Taylor, M.: Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows. Bull. Braz. Math. Soc. 39, 471–513 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lopes Filho, M., Nussenzveig Lopes, H., Planas, G.: On the inviscid limit for two-dimensional incompressible flow with Navier friction condition. SIAM J. Math. Anal. 36, 1130–1141 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Maekawa, Y.: Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit. Adv. Differ. Equ. 18, 101–146 (2013)

    MATH  MathSciNet  Google Scholar 

  33. Masmoudi, N., Rousset, F.: Uniform regularity for the Navier-Stokes equation with Navier boundary condition. Arch. Ration. Mech. Anal. 203, 529–575 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Obabko, A., Cassel, K.: Navier-Stokes solutions of unsteady separation induced by a vortex. J. Fluid Mech. 465, 99–130 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Orlandi, P.: Vortex dipole rebound from a wall. Phys. Fluids A, Fluid Dyn. 2, 1429–1436 (1990)

    Article  Google Scholar 

  36. Pauls, W., Matsumoto, T., Frisch, U., Bec, J.: Nature of complex singularities for the 2D Euler equation. Physica D 219, 40–59 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Peridier, V., Smith, F., Walker, J.: Vortex-induced boundary-layer separation. Part 1. The unsteady limit problem Re→∞. J. Fluid Mech. 232, 99–131 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  38. Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002)

    Book  MATH  Google Scholar 

  39. Roidot, K., Mauser, N.: Numerical study of the transverse stability of NLS soliton solutions in several classes of NLS type equations (2014). arXiv:1401.5349

  40. Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192, 433–461 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sammartino, M., Caflisch, R.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Commun. Math. Phys. 192, 463–491 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sulem, C., Sulem, P., Frisch, H.: Tracing complex singularities with spectral methods. J. Comput. Phys. 50, 138–161 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  43. Temam, R., Wang, X.: The convergence of the solutions of the Navier-Stokes equations to that of the Euler equations. Appl. Math. Lett. 10, 29–33 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  44. van Dommelen, L., Shen, S.: The spontaneous generation of the singularity in a separating laminar boundary layer. J. Comp. Physiol. 38, 125–140 (1980)

    Article  MATH  Google Scholar 

  45. Weideman, J.: Computing the dynamics of complex singularities of nonlinear PDEs. J. Appl. Dyn. Syst. 2, 171–186 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  46. Whang, L., Xin, Z., Zang, A.: Vanishing viscous limits for 3D Navier-Stokes equations with a Navier-slip boundary condition. J. Math. Fluid Mech. 14, 791–825 (2012)

    Article  MathSciNet  Google Scholar 

  47. Xin, Z., Zhang, L.: On the global existence of solutions to the Prandtl’s system. Adv. Math. 181, 88–133 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

The work of the authors has been partially supported by the GNFM of INDAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Gargano.

Additional information

In honor of Professor Salvatore Rionero, on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gargano, F., Sammartino, M., Sciacca, V. et al. Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array. Acta Appl Math 132, 295–305 (2014). https://doi.org/10.1007/s10440-014-9904-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9904-1

Keywords

Navigation