Skip to main content
Log in

Regional Prediction of Tissue Fate in Acute Ischemic Stroke

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Early and accurate prediction of tissue outcome is essential to the clinical decision-making process in acute ischemic stroke. We present a quantitative predictive model of tissue fate that combines regional imaging features available after onset. A key component is the use of cuboids randomly sampled during the learning process. Models trained with time-to-maximum feature (Tmax) computed from perfusion weighted images (PWI) are compared to the ones obtained from the apparent diffusion coefficient (ADC). The prediction task is formalized as a regression problem where the inputs are the local cuboids extracted from Tmax or ADC images at onset, and the output is the segmented FLAIR intensity of the tissue 4 days after intervention. Experiments on 25 acute stroke patients demonstrate the effectiveness of the proposed approach in predicting tissue fate. Results on our dataset show the superiority of the regional model vs. a single-voxel-based approach, indicate that PWI regional models outperform ADC models, and demonstrates that a nonlinear regression model significantly improves the results in comparison to a linear model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. The low sagittal resolution (≥7 mm per voxel) of PWI images did not allow us to test the z-size of the cuboid which was set to 1 slice.

References

  1. Brown, M., G. Hua, and S. Winder. Discriminative learning of local image descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 33(1):43–57, 2011.

    Article  PubMed  Google Scholar 

  2. Brown, M., R. Szeliski, and S. Winder. Multi-image matching using multi-scale oriented patches. CVPR 1:510–517, 2005.

    Google Scholar 

  3. Cai, D., X. He, and J. Han. Spectral regression for efficient regularized subspace learning. In: ICCV, 2007.

  4. Calamante, F., S. Christensen, P. M. Desmond, L. Ostergaard, S. M. Davis, and A. Connelly. The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke 41:1169–1174, 2010.

    Article  PubMed  Google Scholar 

  5. Chatterjee, S. and A. S. Hadi. Influential observations, high leverage points and outliers in linear regression. Stat. Sci. 1:379–393, 1986.

    Article  Google Scholar 

  6. DeLong, E. R., D. M. DeLong, and D. L. Clarke-Pearson. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845, 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Duchon, C. E. Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 18(8):1016–1022, 1979.

    Article  Google Scholar 

  8. Huang, S., Q. Shen, and T. Q. Duong. Artificial neural network prediction of ischemic tissue fate in acute stroke imaging. J. Cereb. Blood Flow Metab. 39:1661–1670, 2010.

    Google Scholar 

  9. Jonsdottir, K., L. Ostergaard, and K. Mouridsen. Predicting tissue outcome from acute stroke magnetic resonance imaging: improving model performance by optimal sampling of training data. Stroke 40:3006–3011, 2009.

    Article  PubMed  Google Scholar 

  10. Mikolajczyk, K. and C. Schmid. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27:1615–1630, 2005.

    Article  PubMed  Google Scholar 

  11. Nguyen, V., H. Pien, N. Menenzes, C. Lopez, C. Melinosky, O. Wu, A. Sorensen, G. Cooperman, H. Ay, W. Koroshetz, Y. Liu, J. Nuutinen, H. Aronen, and J. Karonen. Stroke tissue outcome prediction using a spatially-correlated model. In: PPIC, 2008.

  12. Olivot, J., M. Mlynash, V. Thijs, A. Purushotham, S. Kemp, M. Lansberg, L. Wechsler, G. Gold, R. Bammer, M. Marks, and G. Albers. Geography, structure, and evolution of diffusion and perfusion lesions in Diffusion and perfusion imaging Evaluation For Understanding Stroke Evolution (DEFUSE). Stroke 40(10):3245–3251, 2009.

    Article  PubMed  Google Scholar 

  13. Olivot, J. M., M. Mlynash, G. Zaharchuk, M. Straka, R. Bammer, N. Schwartz, M. G. Lansberg, M. E. Moseley, and G. W. Albers. Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurology 72:1140–1145, 2009.

    Article  PubMed  Google Scholar 

  14. Rose, S., J. Chalk, M. Griffin, A. Janke, F. Chen, G. McLachan, D. Peel, F. Zelaya, H. Markus, D. Jones, A. Simmons, M. O’Sullivan, J. Jarosz, W. Strugnell, D. Doddrell, and J. Semple. MRI based diffusion and perfusion predictive model to estimate stroke evolution. JMRI 19(8):1043–1053, 2001.

    CAS  Google Scholar 

  15. Scalzo, F., Q. Hao, J. Alger, X. Hu, and D. Liebeskind. Tissue fate prediction in acute ischemic stroke using cuboid models. ISVC 6454:292–301, 2010.

    Google Scholar 

  16. Scalzo, F., P. Xu, S. Asgari, M. Bergsneider, and X. Hu. Regression analysis for peak designation in pulsatile pressure signals. Med. Biol. Eng. Comput. 47:967–977, 2009.

    Article  PubMed  Google Scholar 

  17. Shen, Q., and T. Duong. Quantitative prediction of ischemic stroke tissue fate. NMR Biomed. 21:839–848, 2008.

    Article  PubMed  Google Scholar 

  18. Shen, Q., H. Ren, M. Fisher, and T. Duong. Statistical prediction of tissue fate in acute ischemic brain injury. J. Cereb. Blood Flow Metab. 25:1336–1345, 2005.

    Article  PubMed  Google Scholar 

  19. Siegel, S., and N. Castellan. Nonparametric Statistics for the Behavioral Sciences, 2nd ed. McGraw–Hill, Inc., Boston, 1988.

  20. Smith, S. Fast robust automated brain extraction. Hum. Brain Mapp. 17(3):143–155, 2002.

    Article  PubMed  Google Scholar 

  21. Smith, W. S., G. Sung, J. Saver, R. Budzik, G. Duckwiler, D. S. Liebeskind, et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke 39:1205–1212, 2008.

    Article  PubMed  Google Scholar 

  22. Wu, O., W. Koroshetz, L. Ostergaard, F. Buonanno, W. Copen, R. Gonzalez, G. Rordorf, B. Rosen, L. Schwamm, R. Weisskoff, and A. Sorensen. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke 32(4):933–942, 2001.

    Article  PubMed  CAS  Google Scholar 

  23. Wu, O., T. Sumii, M. Asahi, M. Sasamata, L. Ostergaard, B. Rosen, E. Lo, and R. Dijkhuizen. Infarct prediction and treatment assessment with MRI-based algorithms in experimental stroke models. J. Cereb. Blood Flow Metab. 27:196–204, 2007.

    Article  PubMed  Google Scholar 

  24. Yoo, A. J., E. R. Barak, W. A. Copen, S. Kamalian, L. R. Gharai, M. A. Pervez, L. H. Schwamm, R. G. Gonzalez, and P. W. Schaefer. Combining acute diffusion-weighted imaging and mean transmit time lesion volumes with NIHSSS improves the prediction of acute stroke outcome. Stroke 41:1728–1735, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (NSFC) to F.S., grant number 31050110122. D.L. was partially supported by NIH/NINDS K23NS054084, P50NS044378, K24NS072272.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Scalzo.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scalzo, F., Hao, Q., Alger, J.R. et al. Regional Prediction of Tissue Fate in Acute Ischemic Stroke. Ann Biomed Eng 40, 2177–2187 (2012). https://doi.org/10.1007/s10439-012-0591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0591-7

Keywords

Navigation