Skip to main content
Log in

Development and Validation of a Predictive Bone Fracture Risk Model for Astronauts

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There are still many unknowns in the physiological response of human beings to space, but compelling evidence indicates that accelerated bone loss will be a consequence of long-duration spaceflight. Lacking phenomenological data on fracture risk in space, we have developed a predictive tool based on biomechanical and bone loading models at any gravitational level of interest. The tool is a statistical model that forecasts fracture risk, bounds the associated uncertainties, and performs sensitivity analysis. In this paper, we focused on events that represent severe consequences for an exploration mission, specifically that of spinal fracture resulting from a routine task (lifting a heavy object up to 60 kg), or a spinal, femoral or wrist fracture due to an accidental fall or an intentional jump from 1 to 2 m. We validated the biomechanical and bone fracture models against terrestrial studies of ground reaction forces, skeletal loading, fracture risk, and fracture incidence. Finally, we predicted fracture risk associated with reference missions to the moon and Mars that represented crew activities on the surface. Fracture was much more likely on Mars due to compromised bone integrity. No statistically significant gender-dependent differences emerged. Wrist fracture was the most likely type of fracture, followed by spinal and hip fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

AL:

Applied load (N)

BFxRM:

Bone fracture risk model

BM:

Body mass (kg)

BMC:

Bone mineral content (g/cm3)

BMD:

Bone mineral density (g/cm2)

CoM:

Center of mass

DXA:

Dual energy X-ray absorptiometry, a means of quantifying BMD

EVA:

Extra-vehicular activity

F:

Female

FL:

Fracture load (N)

FN:

Femoral neck

FOR:

Factor of risk

FRI:

Fracture risk index

LS:

Lumbar spine

LSAH:

Longitudinal Study of Astronaut Health

M:

Male

n :

Sample size

p :

Probability

QCT:

Quantitative computed tomography, a means of quantifying BMC

a :

A general empirical coefficient

b :

Damping coefficient (kN s/m)

F :

Force (N)

h :

Height (cm)

k :

Stiffness coefficient (kN/m)

l :

Length (cm)

m :

Mass (kg)

x :

Displacement (cm)

VO2max :

O2 capacity during maximum aerobic exercise (mL/(kg min))

β:

Posterolateral angle of impact (°)

ϕ:

Slope factor

μ :

Position factor

σ:

Standard deviation

θ :

Trunk flexion angle (°)

a:

Active response

A:

Arm

BL:

Bone loss

CM:

Center of mass of the torso

e:

Earth

eff:

Effective

F:

Feet

G:

Ground

GR:

Ground reaction (force)

H:

Hip

HAT:

Head, arms and torso

LS:

Lumbar spine

O:

Object

PL:

Pelvis and legs

PM:

Postural muscles

s:

Suit

S:

Shoulder

T:

Torso

tot:

Total body

UB:

Upper body

W:

Wrist

Wa:

Waist

WaS:

Waist to shoulder

References

  1. Amin, S. BMD data for the ultradistal radius. Personal communication, 2008.

  2. Anthropometric Source Book. Volume I: Anthropometry for Designers. Yellow Springs, OH: Webb Associates, 1978.

  3. Anthropometry and mass distribution for human analogues. Volume I: Military aviators. Anthropology Research Project. AAMRL-TR-88-010. 21988, 1978.

  4. Arampatzis, A., G. P. Bruggemann, and G. M. Klapsing. Leg stiffness and mechanical energetic processes during jumping on a sprung surface. Med. Sci. Sports Exerc. 33:923–931, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Arampatzis, A., G. P. Bruggemann, and V. Metzler. The effect of speed on leg stiffness and joint kinetics in human running. J. Biomech. 32:1349–1353, 1999.

    Article  PubMed  CAS  Google Scholar 

  6. Arampatzis, A., F. Schade, M. Walsh, and G. P. Bruggemann. Influence of leg stiffness and its effect on myodynamic jumping performance. J. Electromyogr. Kinesiol. 11:355–364, 2001.

    Article  PubMed  CAS  Google Scholar 

  7. Arampatzis, A., S. Stafilidis, G. Morey-Klapsing, and G. P. Bruggemann. Interaction of the human body and surfaces of different stiffness during drop jumps. Med. Sci. Sports Exerc. 36:451–459, 2004.

    Article  PubMed  Google Scholar 

  8. Beck, T. J., C. B. Ruff, K. E. Warden, W. W. Scott, Jr., and G. U. Rao. Predicting femoral neck strength from bone mineral data. A structural approach. Invest. Radiol. 25:6–18, 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Bensch, F. V., M. J. Kiuru, M. P. Koivikko, and S. K. Koskinen. Spine fractures in falling accidents: analysis of multidetector CT findings. Eur. Radiol. 14:618–624, 2004.

    Article  PubMed  Google Scholar 

  10. Biggemann, M., D. Hilweg, S. Seidel, M. Horst, and P. Brinckmann. Risk of vertebral insufficiency fractures in relation to compressive strength predicted by quantitative computed tomography. Eur. J. Radiol. 13:6–10, 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Bouxsein, M. L., L. J. Melton, III, B. L. Riggs, J. Muller, E. J. Atkinson, A. L. Oberg, R. A. Robb, J. J. Camp, P. A. Rouleau, C. H. McCollough, and S. Khosla. Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J. Bone Miner. Res. 21:1475–1482, 2006.

    Article  PubMed  Google Scholar 

  12. Branke, J., K. Deb, K. Mitetinen, and R. Slowinski. Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer, 2008.

  13. Brinckmann, P., M. Biggemann, and D. Hilweg. Prediction of the compressive strength of human lumbar vertebrae. Spine 14:606–610, 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Carpenter, R. D., G. S. Beaupre, T. F. Lang, E. S. Orwoll, and D. R. Carter. New QCT analysis approach shows the importance of fall orientation on femoral neck strength. J. Bone Miner. Res. 20:1533–1542, 2005.

    Article  PubMed  Google Scholar 

  15. Chaffin, D. B. A computerized biomechanical model-development of and use in studying gross body actions. J. Biomech. 2:429–441, 1969.

    Article  PubMed  CAS  Google Scholar 

  16. Chaffin, D. B., and W. H. Baker. A biomechanical model for analysis of symmetric sagittal plane lifting. AIIE Trans. 2:16–27, 1970.

    Google Scholar 

  17. Cheng, X. G., G. Lowet, S. Boonen, P. H. Nicholson, P. Brys, J. Nijs, and J. Dequeker. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 20:213–218, 1997.

    Article  PubMed  CAS  Google Scholar 

  18. Cheng, X. G., G. Lowet, S. Boonen, P. H. F. Nicholson, G. van der Perre, and J. Dequeker. Prediction of vertebral and femoral strength in vitro by bone mineral density measured at different skeletal sites. J. Bone Miner. Res. 13:1439–1443, 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Chi, K. J., and D. Schmitt. Mechanical energy and effective foot mass during impact loading of walking and running. J. Biomech. 38:1387–1395, 2005.

    Article  PubMed  Google Scholar 

  20. Chiu, J., and S. N. Robinovitch. Prediction of upper extremity impact forces during falls on the outstretched hand. J. Biomech. 31:1169–1176, 1998.

    Article  PubMed  CAS  Google Scholar 

  21. Chou, P. H., Y. L. Chou, C. J. Lin, F. C. Su, S. Z. Lou, C. F. Lin, and G. F. Huang. Effect of elbow flexion on upper extremity impact forces during a fall. Clin. Biomech. 16(10):888–894, 2001.

    Article  CAS  Google Scholar 

  22. Crawford, R. P., C. E. Cann, and T. M. Keaveny. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750, 2003.

    Article  PubMed  Google Scholar 

  23. Crawford, R. P., and T. M. Keaveny. Relationship between axial and bending behaviors of the human thoracolumbar vertebra. Spine 29:2248–2255, 2004.

    Article  PubMed  Google Scholar 

  24. Cummings, S. R., D. B. Karpf, F. Harris, H. K. Genant, K. Ensrud, A. Z. LaCroix, and D. M. Black. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am. J. Med. 112:281–289, 2002.

    Article  PubMed  CAS  Google Scholar 

  25. Dai, L. The relationship between vertebral body deformity and disc degeneration in lumbar spine of the senile. Eur. Spine J. 7:40–44, 1998.

    Article  PubMed  CAS  Google Scholar 

  26. Davidson, P. L., D. J. Chalmers, and S. C. Stephenson. Prediction of distal radius fracture in children, using a biomechanical impact model and case–control data on playground free falls. J. Biomech. 39(3):503–509, 2006.

    PubMed  Google Scholar 

  27. DeGoede, K. M., and J. A. Ashton-Miller. Fall arrest strategy affects peak hand impact force in a forward fall. J. Biomech. 35:843–848, 2002.

    Article  PubMed  CAS  Google Scholar 

  28. Demetriades, D., J. Murray, C. Brown, G. Velmahos, A. Salim, K. Alo, and P. Rhee. High-level falls: type and severity of injuries and survival outcome according to age. J. Trauma 58:342–345, 2005.

    Article  PubMed  Google Scholar 

  29. Duan, Y., E. Seeman, and C. H. Turner. The biomechanical basis of vertebral body fragility in men and women. J. Bone Miner. Res. 16(12):2276–2283, 2001.

    Article  PubMed  CAS  Google Scholar 

  30. Duma, S. M., A. R. Kemper, D. M. McNeely, P. G. Brolinson, and F. Matsuoka. Biomechanical response of the lumbar spine in dynamic compression. Biomed. Sci. Instrum. 42:476–481, 2006.

    PubMed  Google Scholar 

  31. Ebbesen, E. N., J. S. Thomsen, H. Beck-Nielsen, H. J. Nepper-Rasmussen, and L. Mosekilde. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone 25:713–724, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Ebong, W. W. Falls from trees. Trop. Geogr. Med. 30:63–67, 1978.

    PubMed  CAS  Google Scholar 

  33. Eckstein, F., M. Fischbeck, V. Kuhn, T. M. Link, M. Priemel, and E. M. Lochmuller. Determinants and heterogeneity thoracolumbar spine of mechanical competence throughout the of elderly women and men. Bone 35:364–374, 2004.

    Article  PubMed  Google Scholar 

  34. Edmondston, S. J., K. P. Singer, R. E. Day, R. I. Price, and P. D. Breidahl. Ex vivo estimation of thoracolumbar vertebral body compressive strength: The relative contributions of bone densitometry and vertebral morphometry. Osteoporos. Int. 7:142–148, 1997.

    Article  PubMed  CAS  Google Scholar 

  35. Engelund, W. C., R. W. Powell, and R. H. Tolson. Atmospheric modeling challenges and measurement requirements for Mars entry, descent and landing. #9025. Third International Workshop on the Mars Atmosphere: Modeling and Observations. Mars atmosphere: Modeling and observations, 11/2008.

  36. Eswaran, S. K., A. Guta, M. F. Adams, and T. M. Keaveny. Cortical and trabecular load sharing in the human vertebral body. J. Bone Miner. Res. 21:307–314, 2006.

    Article  PubMed  Google Scholar 

  37. EVA Design Requirements and Considerations. JSC-39117. Houston, TX: NASA Johnson Space Center, 2004.

  38. Extravehicular (EVA) Hardware Generic Design Requirements Document. JSC-26626. Houston, TX: NASA Johnson Space Center, 1994.

  39. Farley, C. T., and D. C. Morgenroth. Leg stiffness primarily depends on ankle stiffness during human hopping. J. Biomech. 32:267–273, 1999.

    Article  PubMed  CAS  Google Scholar 

  40. Ferris, D. P., and C. T. Farley. Interaction of leg stiffness and surface stiffness during human hopping. J. Appl. Physiol. 82:15–22, 1997.

    PubMed  CAS  Google Scholar 

  41. Ferris, D. P., K. L. Liang, and C. T. Farley. Runners adjust leg stiffness for their first step on a new running surface. J. Biomech. 32:787–794, 1999.

    Article  PubMed  CAS  Google Scholar 

  42. Fiolkowski, P., M. Bishop, D. Brunt, and B. Williams. Plantar feedback contributes to the regulation of leg stiffness. Clin. Biomech. 20:952–958, 2005.

    Article  Google Scholar 

  43. Ford, C. M., T. M. Keaveny, and W. C. Hayes. The effect of impact direction on the structural capacity of the proximal femur during falls. J. Bone Miner. Res. 11:377–383, 1996.

    Article  PubMed  CAS  Google Scholar 

  44. Garnier, K. B., R. Dumas, C. Rumelhart, and M. E. Arlot. Mechanical characterization in shear of human femoral cancellous bone: torsion and shear tests. Med. Eng. Phys. 21:641–649, 1999.

    Article  Google Scholar 

  45. George, W. T., and D. Vashishth. Susceptibility of aging human bone to mixed-mode fracture increases bone fragility. Bone 38:105–111, 2006.

    Article  PubMed  CAS  Google Scholar 

  46. Gomez-Benito, M. J., J. M. Garcia-Aznar, and M. Doblare. Finite element prediction of proximal femoral fracture patterns under different loads. J. Biomech. Eng. 127:9–14, 2005.

    Article  PubMed  CAS  Google Scholar 

  47. Goodacre, S., M. Than, E. C. Goyder, and A. P. Joseph. Can the distance fallen predict serious injury after a fall from a height? J. Trauma 46:1055–1058, 1999.

    Article  PubMed  CAS  Google Scholar 

  48. Goonetilleke, U. K. Injuries caused by falls from heights. Med. Sci. Law 20:262–275, 1980.

    PubMed  CAS  Google Scholar 

  49. Granata, K. P., D. A. Padua, and S. E. Wilson. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J. Electromyogr. Kinesiol. 12:127–135, 2002.

    Article  PubMed  CAS  Google Scholar 

  50. Greer, W., R. Smith, and A. J. Shipman. A multi-exponential model of postmenopausal decline in vertebral bone mineral density—a new approach to the BMD reference range. J. Clin. Densitom. 6:113–124, 2003.

    Article  PubMed  Google Scholar 

  51. Hayes, W. C., and E. R. Myers. Biomechanical considerations of hip and spine fractures in osteoporotic bone. In: Proceedings AAOS Instructional Lectures, edited by D. Springfield. Instr. Course Lect. 46:431–438, 1997.

  52. Homminga, J., B. Van-Rietbergen, E. M. Lochmuller, H. Weinans, F. Eckstein, and R. Huiskes. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34:510–516, 2004.

    Article  PubMed  CAS  Google Scholar 

  53. Hsiao, E. T., and S. N. Robinovitch. Common protective movements govern unexpected falls from standing height. J. Biomech. 31:1–9, 1998.

    Article  PubMed  CAS  Google Scholar 

  54. Hudelmaier, M., V. Kuhn, E. M. Lochmuller, H. Well, M. Priemel, T. M. Link, and F. Eckstein. Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos. Int. 15:375–381, 2004.

    Article  PubMed  CAS  Google Scholar 

  55. Hui, S. L., C. W. Slemenda, and C. C. Johnston. Age and bone mass as predictors of fracture in a prospective study. J. Clin. Invest. 81:1804–1809, 1988.

    Article  PubMed  CAS  Google Scholar 

  56. Izambert, O., D. Mitton, M. Thourot, and F. Lavaste. Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. Eur. Spine J. 12:562–566, 2003.

    Article  PubMed  CAS  Google Scholar 

  57. Kanis, J. A., O. Johnell, A. Oden, B. Jonsson, C. De Laet, and A. Dawson. Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone 27:585–590, 2000.

    Article  PubMed  CAS  Google Scholar 

  58. Kannus, P., J. Parkkari, and J. Poutala. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly: an in vitro biomechanical study. Bone 25:229–235, 1999.

    Article  PubMed  CAS  Google Scholar 

  59. Keyak, J. H., A. K. Koyama, A. LeBlanc, Y. Lu, and T. F. Lang. Reduction in proximal femoral strength due to long-duration spaceflight. Bone 44:449–453, 2009.

    Article  PubMed  CAS  Google Scholar 

  60. Keyak, J. H., H. B. Skinner, and J. A. Fleming. Effect of force direction on femoral fracture load for two types of loading conditions. J. Orthop. Res. 19:539–544, 2001.

    Article  PubMed  CAS  Google Scholar 

  61. Kim, K. J., A. M. Alian, W. S. Morris, and Y. H. Lee. Shock attenuation of various protective devices for prevention of fall-related injuries of the forearm/hand complex. Am. J. Sports Med. 34:637–643, 2006.

    Article  PubMed  Google Scholar 

  62. Kong, W., K. Kash, and C. Lee. Biomechanical modeling of paratrooper landings. AIAA-2001-2029, 2001.

  63. Kukla, C., C. Gaebler, R. W. Pichl, R. Prokesch, G. Heinze, and T. Heinz. Predictive geometric factors in a standardized model of femoral neck fracture. Experimental study of cadaveric human femurs. Injury 33:427–433, 2002.

    Article  PubMed  CAS  Google Scholar 

  64. Lafortune, M. A., M. J. Lake, and E. M. Hennig. Differential shock transmission response of the human body to impact severity and lower limb posture. J. Biomech. 29:1531–1537, 1996.

    PubMed  CAS  Google Scholar 

  65. Lang, T. F., A. D. LeBlanc, H. J. Evans, and Y. Lu. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J. Bone Miner. Res. 21:1224–1230, 2006.

    Article  PubMed  Google Scholar 

  66. Lapostolle, F., C. Gere, S. W. Borron, T. Petrovic, F. Dallemagne, A. Beruben, C. Lapandry, and N. Adnet. Prognostic factors in victims of falls from height. Crit. Care Med. 33:1239–1242, 2005.

    Article  PubMed  Google Scholar 

  67. LeBlanc, A., C. Lin, L. Shackelford, V. Sinitsyn, H. Evans, O. Belichenko, B. Schenkman, I. Kozlovskaya, V. Oganov, A. Bakulin, T. Hedrick, and D. Feeback. Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J. Appl. Physiol. 89:2158–2164, 2000.

    PubMed  CAS  Google Scholar 

  68. LeBlanc, A., V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin. Bone mineral and lean tissue loss after long duration space flight. J. Musculoskelet. Neuronal Interact. 1:157–160, 2000.

    PubMed  CAS  Google Scholar 

  69. Licata, A. Bone density vs. bone quality: What’s a clinician to do? Cleve. Clin. J. Med. 76:331–336, 2009.

    Article  PubMed  Google Scholar 

  70. Lindsey, D. P., M. J. Kim, M. Hannibal, and T. F. Alamin. The monotonic and fatigue properties of osteoporotic thoracic vertebral bodies. Spine 30:645–649, 2005.

    Article  PubMed  Google Scholar 

  71. Lo, J., G. N. Mccabe, K. M. DeGoede, H. Okuizumi, and J. A. Ashton-Miller. On reducing hand impact force in forward falls: results of a brief intervention in young males. Clin. Biomech. 18:730–736, 2003.

    Article  CAS  Google Scholar 

  72. Lowenstein, S. R., M. Yaron, R. Carrero, D. Devereux, and L. M. Jacobs. Vertical trauma: injuries to patients who fall and land on their feet. Ann. Emerg. Med. 18:161–165, 1989.

    Article  PubMed  CAS  Google Scholar 

  73. Lubahn, J., R. Englund, G. Trinidad, J. Lyons, D. Ivance, and F. L. Buczek. Adequacy of laboratory simulation of in-line skater falls. J. Hand Surg. 30:283–288, 2005.

    Article  Google Scholar 

  74. MacNeil, J. A., and S. K. Boyd. Load distribution and the predictive power of morphological indices in the distal radius and tibia by high resolution peripheral quantitative computed tomography. Bone 41:129–137, 2007.

    Article  PubMed  Google Scholar 

  75. Maimoun, L., C. Fattal, J. P. Micallef, E. Peruchon, and P. Rabischong. Bone loss in spinal cord-injured patients: from physiopathology to therapy. Spinal Cord 44:203–210, 2006.

    Article  PubMed  CAS  Google Scholar 

  76. Man-Systems Integration Standards. Volume I. Boeing Aerospace Company. NASA STD-3000, 1995.

  77. Marras, W. S., and C. M. Sommerich. A three-dimensional motion model of loads on the lumbar spine. I. Model structure. Hum. Factors 33:123–137, 1991.

    PubMed  CAS  Google Scholar 

  78. McNair, P. J., and P. Prasad. Normative data of vertical ground reaction forces during landing from a jump. J. Sci. Med. Sport 2:86–88, 1999.

    Article  PubMed  CAS  Google Scholar 

  79. Melton, III, L. J., S. Khosla, S. J. Achenbach, M. K. O’Connor, W. M. O’fallon, and B. L. Riggs. Effects of body size and skeletal site on the estimated prevalence of osteoporosis in women and men. Osteoporos. Int. 11:977–983, 2000.

    Article  PubMed  Google Scholar 

  80. Minaire, P., P. Neunier, C. Edouard, J. Bernard, P. Courpron, and J. Bourret. Quantitative histological data on disuse osteoporosis: comparison with biological data. Calcif. Tissue Res. 17:57–73, 1974.

    Article  PubMed  CAS  Google Scholar 

  81. Mizrahi, J., M. J. Silva, and W. C. Hayes. Finite element stress analysis of simulated metastatic lesions in the lumbar vertebral body. J. Biomed. Eng. 14:467–475, 1992.

    Article  PubMed  CAS  Google Scholar 

  82. Mizrahi, J., M. J. Silva, T. M. Keaveny, W. T. Edwards, and W. C. Hayes. Finite-element stress analysis of the normal and osteoporotic lumbar vertebral body. Spine 18:2088–2096, 1993.

    Article  PubMed  CAS  Google Scholar 

  83. Mizrahi, J., and Z. Susak. In vivo elastic and damping response of the human leg to impact forces. J. Biomech. Eng. 104:63–66, 1982.

    Article  PubMed  CAS  Google Scholar 

  84. Moga, P. J., M. Erig, D. B. Chaffin, and M. A. Nussbaum. Torso muscle moment arms at intervertebral levels T10 through L5 from CT scans on eleven male and eight female subjects. Spine 18:2305–2309, 1993.

    Article  PubMed  CAS  Google Scholar 

  85. Moritz, C. T., and C. T. Farley. Passive dynamics change leg mechanics for an unexpected surface during human hopping. J. Appl. Physiol. 97:1313–1322, 2004.

    Article  PubMed  Google Scholar 

  86. Moro, M., A. T. Hecker, M. L. Bouxsein, and E. R. Myers. Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif. Tissue Int. 56:206–209, 1995.

    Article  PubMed  CAS  Google Scholar 

  87. Muller, M. E., C. E. Webber, and J. D. Adachi. Hormone replacement therapy improves distal radius bone structure by endocortical mineral deposition. Can. J. Physiol. Pharmacol. 81:952–958, 2003.

    Article  PubMed  CAS  Google Scholar 

  88. Muller, M. E., C. E. Webber, and M. L. Bouxsein. Predicting the failure load of the distal radius. Osteoporos. Int. 14:345–352, 2003.

    Article  PubMed  Google Scholar 

  89. Mussolino, M. E., A. C. Looker, and E. S. Orwoll. Jogging and bone mineral density in men: results from NHANES III. Am. J. Public Health 91:1056–1059, 2001.

    Article  PubMed  CAS  Google Scholar 

  90. Myers, E. R., and S. E. Wilson. Biomechanics of osteoporosis and vertebral fracture. Spine 22:25S–31S, 1997.

    Article  PubMed  CAS  Google Scholar 

  91. NASA Longitudinal Study of Astronaut Health. http://lsda.jsc.nasa.gov/docs/research/research_detail.cfm?experiment_type_code=23&researchtype=current, 2009.

  92. NASA Space flight human system standard. Volume 1: Crew health. NASA-STD-3001. National Aeronautics and Space Administration, 2007.

  93. Nelson, E. S., B. Lowenstein, A. Licata, and J. G. Myers. Interpreting population studies of falls from height. NASA Technical Memorandum, 2009 (submitted).

  94. Nguyen-Thanh, Q., C. Tresallet, O. Langeron, B. Riou, and F. Menegaux. Polytrauma is more severe after a free fall from a height than after a motor vehicle accident. Ann. Chir. 128:526–529, 2003.

    Article  PubMed  CAS  Google Scholar 

  95. Nicholson, P. H., X. G. Cheng, G. Lowet, S. Boonen, M. W. Davie, J. Dequeker, and G. Van der Perre. Structural and material mechanical properties of human vertebral cancellous bone. Med. Eng. Phys. 19:729–737, 1997.

    Article  PubMed  CAS  Google Scholar 

  96. Ochia, R. S., and R. P. Ching. Internal pressure measurements during burst fracture formation in human lumbar vertebrae. Spine 27:1160–1167, 2002.

    Article  PubMed  Google Scholar 

  97. Ochia, R. S., A. F. Tencer, and R. P. Ching. Effect of loading rate on endplate and vertebral body strength in human lumbar vertebrae. J. Biomech. 36:1875–1881, 2003.

    Article  PubMed  Google Scholar 

  98. Ong, A., P. T. C. Iau, A. W. Yeo, M. P. Koh, and G. K. K. Lau. Victims of falls from a height surviving to hospital admission in two Singapore hospitals. Med. Sci. Law 44:201–206, 2004.

    PubMed  Google Scholar 

  99. Ott, S. Osteoporosis and bone physiology. http://courses.washington.edu/bonephys/opbmdtz.html, 11-25-2006.

  100. Padua, D. A., C. R. Carcia, B. L. Arnold, and K. P. Granata. Gender differences in leg stiffness and stiffness recruitment strategy during two-legged hopping. J. Mot. Behav. 37:111–125, 2005.

    Article  PubMed  Google Scholar 

  101. Pinilla, T. P., K. C. Boardman, M. L. Bouxsein, E. R. Myers, and W. C. Hayes. Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif. Tissue Int. 58:231–235, 1996.

    PubMed  CAS  Google Scholar 

  102. Pistoia, W., B. Van Rietbergen, E. M. Lochmuller, C. A. Lill, F. Eckstein, and P. Ruegsegger. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30:842–848, 2002.

    Article  PubMed  CAS  Google Scholar 

  103. Polikeit, A., L. P. Nolte, and S. J. Ferguson. Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit. J. Biomech. 37:1061–1069, 2004.

    Article  PubMed  Google Scholar 

  104. Prasad, P., and A. I. King. An experimentally validated dynamic model of the spine. J. Appl. Mech. Trans. ASME 41:546–550, 1974.

    Google Scholar 

  105. Renau, A., J. Farrerons, B. Yoldi, J. Gil, I. Proubasta, J. Llauger, J. G. Olivan, and J. Planell. Yield point in prediction of compressive behavior of lumbar vertebral body by dual-energy X-ray absorptiometry. J. Clin. Densitom. 7:382–389, 2004.

    Article  PubMed  Google Scholar 

  106. Reynolds, B. M., N. A. Balsano, and F. X. Reynolds. Falls from heights: a surgical experience of 200 consecutive cases. Ann. Surg. 174:304–308, 1971.

    Article  PubMed  CAS  Google Scholar 

  107. Richter, D., M. P. Hahn, P. A. Ostermann, A. Ekkernkamp, and G. Muhr. Vertical deceleration injuries: a comparative study of the injury patterns of 101 patients after accidental and intentional high falls. Injury 27:655–659, 1996.

    Article  PubMed  CAS  Google Scholar 

  108. Riggs, B. L., L. J. Melton, III, R. A. Robb, J. J. Camp, E. J. Atkinson, A. L. Oberg, P. A. Rouleau, C. H. McCollough, S. Khosla, and M. L. Bouxsein. Population-based analysis of the relationship of whole bone strength indices and fall-related loads to age- and sex-specific patterns of hip and wrist fractures. J. Bone Miner. Res. 21:315–323, 2006.

    Article  PubMed  Google Scholar 

  109. Robinovitch, S. N., W. C. Hayes, and T. A. McMahon. Distribution of contact force during impact to the hip. Ann. Biomed. Eng. 25:499–508, 1997.

    Article  PubMed  CAS  Google Scholar 

  110. Sabick, M. B., J. G. Hay, V. K. Goel, and S. A. Banks. Active responses decrease impact forces at the hip and shoulder in falls to the side. J. Biomech. 32:993–998, 1999.

    Article  PubMed  CAS  Google Scholar 

  111. Scalea, T., A. Goldstein, T. Phillips, S. J. Sclafani, T. Panetta, J. McAuley, and G. Shaftan. An analysis of 161 falls from a height: the ‘jumper syndrome’. J. Trauma 26:706–712, 1986.

    Article  PubMed  CAS  Google Scholar 

  112. Schultz, A., G. B. Andersson, R. Ortengren, R. Bjork, and M. Nordin. Analysis and quantitative myoelectric measurements of loads on the lumbar spine when holding weights in standing postures. Spine 7:390–397, 1982.

    Article  PubMed  CAS  Google Scholar 

  113. Seegmiller, J. G., and S. T. McCaw. Ground reaction forces among gymnasts and recreational athletes in drop landings. J. Athl. Train. 38:311–314, 2003.

    PubMed  Google Scholar 

  114. Shackelford, L. C., A. D. LeBlanc, T. B. Driscoll, H. J. Evans, N. J. Rianon, S. M. Smith, E. Spector, D. L. Feeback, and D. Lai. Resistance exercise as a countermeasure to disuse-induced bone loss. J. Appl. Physiol. 97:119–129, 2004.

    Article  PubMed  CAS  Google Scholar 

  115. Sibonga, J. Compilation of pre and post flight Astronaut aBMD. Personal communication, 2006.

  116. Sibonga, J. D., H. J. Evans, H. G. Sung, E. R. Spector, T. F. Lang, V. S. Oganov, A. V. Bakulin, L. C. Shackelford, and A. D. LeBlanc. Recovery of spaceflight-induced bone loss: Bone mineral density after long-duration missions as fitted with an exponential function. Bone 41:973–978, 2007.

    Article  PubMed  CAS  Google Scholar 

  117. Singer, K., S. Edmondston, R. Day, P. Breidahl, and R. Price. Prediction of thoracic and lumbar vertebral body compressive strength—correlations with bone mineral density and vertebral region. Bone 17:167–174, 1995.

    Article  PubMed  CAS  Google Scholar 

  118. Snyder, R. G. Human tolerances to extreme impacts in free fall. Aerosp. Med. 34:695–709, 1963.

    PubMed  CAS  Google Scholar 

  119. Song, Y., M. A. Liebschner, and G. H. Gunaratne. A study of age-related architectural changes that are most damaging to bones. Biophys. J. 87:3642–3647, 2004.

    Article  PubMed  CAS  Google Scholar 

  120. Sran, M. M., K. M. Khan, Q. A. Zhu, H. A. McKay, and T. R. Oxland. Failure characteristics of the thoracic spine with a posteroanterior load: Investigating the safety of spinal mobilization. Spine 29:2382–2388, 2004.

    Article  PubMed  Google Scholar 

  121. Staebler, M. P., D. C. Moore, E. Akelman, A. P. C. Weiss, P. D. Fadale, and J. J. Crisco. The effect of wrist guards on bone strain in the distal forearm. Am. J. Sports Med. 27:500–506, 1999.

    PubMed  CAS  Google Scholar 

  122. Sugita, H., M. Oka, J. Toguchida, T. Nakamura, T. Ueo, and T. Hayami. Anisotropy of osteoporotic cancellous bone. Bone 24:513–516, 1999.

    Article  PubMed  CAS  Google Scholar 

  123. Taylor, D., E. Casolari, and C. Bignardi. Predicting stress fractures using a probabilistic model of damage, repair and adaptation. J. Orthop. Res. 22:487–494, 2004.

    Article  PubMed  Google Scholar 

  124. Thomas, K. S., and H. J. McMann. US Spacesuits. Springer-Verlag, 2005.

  125. Turk, E. E., and M. Tsokos. Pathologic features of fatal falls from height. Am. J. Forensic Med. Pathol. 25:194–199, 2004.

    Article  PubMed  Google Scholar 

  126. Turner, C. H. Bone strength: current concepts. Ann. N. Y. Acad. Sci. 1068:429–446, 2006.

    Article  PubMed  Google Scholar 

  127. Turner, C. H., T. Wang, and D. B. Burr. Shear strength and fatigue properties of human cortical bone determined from pure shear tests. Calcif. Tissue Int. 69:373–378, 2001.

    Article  PubMed  CAS  Google Scholar 

  128. van den Kroonenberg, A. J., W. C. Hayes, and T. A. McMahon. Hip impact velocities and body configurations for voluntary falls from standing height. J. Biomech. 29:807–811, 1996.

    Article  PubMed  Google Scholar 

  129. Velmahos, G. C., D. Demetriades, D. Theodorou, E. E. Cornwell, H. Belzberg, J. Asensio, J. Murray, and T. V. Berne. Patterns of injury in victims of urban free-falls. World J. Surg. 21:816–821, 1997.

    Article  PubMed  CAS  Google Scholar 

  130. Velmahos, G. C., K. Spaniolas, H. B. Alam, M. de Moya, A. Gervasini, L. Petrovick, and A. K. Conn. Falls from height: spine, spine, spine!. J. Am. Coll. Surg. 203:605–611, 2006.

    Article  PubMed  Google Scholar 

  131. Wang, Q., J. W. Teo, A. Ghasem-Zadeh, and E. Seeman. Women and men with hip fractures have a longer femoral neck moment arm and greater impact load in a sideways fall. Osteoporos. Int. 20:1151–1156, 2009.

    Article  PubMed  CAS  Google Scholar 

  132. Weilemann, Y., M. J. Thali, B. P. Kneubuehl, and S. A. Bolliger. Correlation between skeletal trauma and energy in falls from great height detected by post-mortem multislice computed tomography (MSCT). Forensic Sci. Int. 180:81–85, 2008.

    Article  PubMed  CAS  Google Scholar 

  133. Wilcox, R. K., D. J. Allen, R. M. Hall, D. Limb, D. C. Barton, and R. A. Dickson. A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur. Spine J. 13:481–488, 2004.

    Article  PubMed  CAS  Google Scholar 

  134. Wirbel, R. J., A. Olinger, M. Karst, and W. E. Mutschler. Treatment of severe injuries caused by attempted suicide: Pattern of injury and influence of the psychiatric disorder on the postoperative course. Eur. J. Surg. 164:109–113, 1998.

    Article  PubMed  CAS  Google Scholar 

  135. Wu, C., D. Hans, Y. He, B. Fan, C. F. Njeh, P. Augat, J. Richards, and H. K. Genant. Prediction of bone strength of distal forearm using radius bone mineral density and phalangeal speed of sound. Bone 26:529–533, 2000.

    Article  PubMed  CAS  Google Scholar 

  136. Yagmur, Y., C. Guloglu, M. Aldemir, and M. Orak. Falls from flat-roofed houses: a surgical experience of 1643 patients. Injury 35:425–428, 2004.

    Article  PubMed  Google Scholar 

  137. Yoganandan, N., A. Sances, Jr., D. J. Maiman, J. B. Myklebust, P. Pech, and S. J. Larson. Experimental spinal injuries with vertical impact. Spine 11(9):855–860, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The BFxRM is a component of the NASA Integrated Medical Model Task under the NASA Exploration Medicine Capabilities Element. We gratefully acknowledge support from the NASA Human Research Program, critical input from Dr. Jean Sibonga, and substantial assistance in portions of the model development from Christina Sulkowski and Kelley Ruehl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. Nelson.

Appendices

Appendix A: Calculation of Fracture Probability from Fracture Risk Index

Davidson et al. 26 provided a means of linking estimates of fracture risk index, FRI, to fracture probability, p fx, through the use of logistic regression to compare the binary condition of actual fractures to non-fractures, with reference to a set of appropriate controls and specified loading events. The logistic regression used in this study results in a sigmoidal curve represented by:

$$ p_{\text{fx}} = {\frac{1}{{\left( {1 + { \exp }\left( { - 1*\left( {{\text{FRI}} - \mu } \right)*\phi } \right)} \right)}}} $$
(A1)

where μ is the position factor of the curve (the value of FRI where the probability is 0.50) and ϕ is the slope factor (a measure of the steepness of the curve). Ideally, the development of relevant values of μ and ϕ would be derived from data of actual skeletal loading events, in which conditions and outcomes (fracture or no fracture), are well documented. Such data are needed to ensure that the FRI to probability relation is consistent with the methods used in the prediction of FRI. Unfortunately, data of this type are lacking in the literature. Digitizing and post-processing Davidson et al.’s data, derived from radial arm fractures in children caused by falls from playground equipment, reveal values of μ and ϕ in the range of 0.58 to 0.6 and 7.5 to 12, respectively. Although not directly applicable to the case of astronaut fractures, these values provide a rational first comparison in evaluating a translation function linking the FRI to estimated fracture probability for astronauts.

To develop the translation function for astronauts without direct loading and fracture data, we must make several assumptions concerning the sigmoidal function parameters, and determine an acceptable fracture threshold range. Several articles in the literature suggest that, at the proximal femur, the fracture threshold (the range when the probability of fracture is not negligible) occurs when the applied load, AL, equals fracture load, FL, within ±1σ of the bone strength17 , 58 or

$$ 0 < p_{\text{fx}} < 1\quad {\text{when}}\; {\text{FL}} - \sigma_{\text{FL}} < {\text{AL}} < {\text{FL}} + \sigma_{\text{FL}} $$

where p fx is the probability of fracture (a number between 0 and 1) and σ is the standard deviation. For our purposes, this threshold would formally translate to:

$$ \begin{aligned} & 0 < p_{\text{fx}} < 1\quad {\text{when}}\; 1 - \sigma_{\text{FRI}} < {\text{FRI}} < 1 + \sigma_{\text{FRI}} \\ & \sigma_{{{\text{FRI}} = 1}} = \left[ {\left( {\sigma_{\text{AL}} {\frac{1}{\text{FL}}}} \right)^{2} + \left( {\sigma_{\text{FL}} {\frac{\text{AL}}{{2{\text{FL}}^{2} }}}} \right)^{2} } \right]^{1/2} \\ \end{aligned} $$
(A2)

The threshold of fracture has a mean value of FRI = 1, and the uncertainty of the threshold value is dependent on the standard deviations of AL and FL. Making use of the fact that at FRI = 1, AL = FL, and using the uncertainty of the loading condition and bone strengths, we estimated that 0.135 < σFRI=1 < 0.22. However, testing of the model using the parameter space imposed by the astronaut data resulted in a standard deviation of the FRI estimates ranging from 0.29 to 0.67. This is due, in part, to the inclusion of other parameter uncertainties and the generally higher mean values of FRI that are calculated. Therefore, to be inclusive of all available data and corresponding uncertainties, the formal estimate of σ at FRI = 1 was adjusted to range from 0.135 to 0.67 in all of the calculations presented in this paper.

To be reasonably confident that the estimated range of μ and ϕ includes the “true” range of μ and ϕ, the following assumptions are made based on the guidance found in the literature:

  1. 1.

    The mean FRI threshold value is 1

  2. 2.

    At FRI = 1 + σ FRI=1, p fx = 0.95 represents the upper limit of the fracture threshold

  3. 3.

    At FRI = 1 − σ FRI=1, p fx = 0.05 represents the lower limit of the fracture threshold

In order to use these assumptions to generate a range of possible ϕ values, the sigmoid equation is first solved for ϕ. This gives:

$$ \phi = - 1*{\frac{{{ \ln }\left( {{\frac{1}{{p_{\text{fx}} }}} - 1} \right)}}{{\left( {{\text{FRI}} \pm \sigma_{{{\text{FRI}} = 1}} - \mu } \right)}}} $$
(A3)

Under our assumptions that the threshold value for FRI = 1, and assuming μ = 1, then the range for ϕ in the threshold region is found to be dependent only on σ FRI=1. For the estimated range of σ FRI=1, the range of estimated ϕ is found to be 4.4 < θ < 22. This approach produces a range on ϕ that is inclusive of the values estimated by Davidson et al. 26

We can again turn to the sigmoid equation to assist in estimating the range of values for μ. Rearranging the sigmoid equation, μ can be calculated as:

$$ \mu = {\frac{{\ln \left( {{\frac{1}{{p_{\text{fx}} }}} - 1} \right)}}{\phi }} + \left( {{\text{FRI}} \pm \sigma_{{{\text{FRI}} = 1}} } \right) $$
(A4)

Assuming that the mean FRI = 1 and using the previous calculation, the mean value for ϕ is evaluated as 13.2. Applying the change in p fx and σ FRI=1 over the combination of their respective ranges, the range for μ is found to be 0.55 < μ < 1.45, which is inclusive of the Davidson et al. 26 estimates. The limits on the family of sigmoid curves, as described over the range of μ and ϕ, are illustrated in Fig. A.1. Although additional data would reduce the uncertainty in these calculations, the approach described here reasonably bounds the available knowledge base, makes use of expert opinion in the literature, and provides a consistent means of representing the uncertainty in estimating fracture risk probability.

Figure A.1
figure 10

Sigmoid curve family representing the estimated fracture threshold translation function for transforming FRI to probability of fracture. Solid line represents mean value of μ and ϕ, while upper and lower fracture thresholds are shown in dotted lines at specified combinations of (μ, ϕ)

To implement the sigmoid translation function for FRI to fracture probability in the probabilistic model for fracture:

  1. 1.

    Uniform probability distributions were established over the range of μ and ϕ.

  2. 2.

    At each trial when an FRI value was calculated in the model, the μ and ϕ distributions were randomly sampled.

  3. 3.

    Using the randomly sampled combined values of μ and ϕ, a translation function using the general form of the sigmoid equation was used to estimate the probability of fracture from the FRI value.

Uniform probability distributions are sometimes referred to as “maximum uncertainty” distributions since no value is more probable to occur than any other value within the limits of the distribution. We chose this type of distribution for estimating μ and ϕ due to the lack of knowledge regarding the shape of a representative probability density function and to formally represent the large (epistemic) uncertainty in this area of the model.

Appendix B: Equations for Biomechanical Model of the Hip and Lumbar Spine

The biomechanical models for dynamic loading shown in Figs. 3b–3d lead to sets of first-order differential equations with unknown time-dependent displacements, x, and velocities, \( \dot{x}. \) For the case of the hip, the equation of motion is:

$$ m_{\text{H}} \ddot{x}_{\text{H}} + b_{\text{H}} \dot{x}_{\text{H}} + k_{\text{H}} x_{\text{H}} = m_{\text{F}} g $$
(B1)

where the subscript H refers to the hip, m is the mass of the body, \( \ddot{x} \) is the acceleration, k is the spring constant, and b is the damping coefficient. In all cases, the initial displacement is set to zero, and the impact velocity is set to\( \sqrt {2gh} , \) where h is the distance fallen. In this case, h is defined as the distance between the ground and the hip.

The equations can be more compactly written as matrix equations, in which the unknown displacement x H is set to x 1 and the unknown velocity, \( \dot{x}_{1} \) to x 2

$$ \left[ {\begin{array}{*{20}c} {\dot{x}_{1} } \\ {\dot{x}_{2} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & 1 \\ { - b/m} & { - k/m} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {x_{1} } \\ {x_{2} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 \\ g \\ \end{array} } \right] $$
(B2)

The initial conditions are zero displacement and impact velocity as set by the local gravitational acceleration:

$$ \left[ {\begin{array}{*{20}c} {x_{1} (0)} \\ {x_{2} (0)} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 \\ {\sqrt {2gh} } \\ \end{array} } \right] $$
(B3)

Once the system of equations is solved, the ground reaction force, F GR, is found by summing the damping and spring forces that are applied between the body and the ground:

$$ F_{\text{GR}} = bx_{2} + kx_{1} $$
(B4)

For the femoral fracture model, F GR multiplied by attenuation factors for the fall orientation and active response is the applied load to the bone. In the biomechanical models for the lumbar spine and the wrist, the body is represented as a series of linked masses connected with linear springs and dampers. For the lumbar spine:

$$ \begin{aligned} & m_{\text{F}} \ddot{x}_{\text{F}} + \dot{x}_{\text{F}} b_{\text{G}} + x_{\text{F}} k_{\text{G}} + (x_{\text{F}} - x_{\text{PL}} )k_{\text{L}} = m_{\text{F}} g \\ & m_{\text{PL}} \ddot{x}_{\text{PL}} + (\dot{x}_{\text{PL}} - \dot{x}_{\text{HAT}} )b_{\text{LS}} + (x_{\text{PL}} - x_{\text{HAT}} )k_{\text{LS}} + (x_{\text{PL}} - x_{\text{F}} )k_{\text{L}} = m_{\text{PL}} g \\ & m_{\text{HAT}} \ddot{x}_{\text{HAT}} + (\dot{x}_{\text{HAT}} - \dot{x}_{\text{PL}} )b_{\text{LS}} + (x_{\text{HAT}} - x_{\text{PL}} )k_{\text{LS}} = m_{\text{HAT}} g \\ \end{aligned} $$
(B5)

When we perform a similar re-definition of the matrix variables by:

$$ \begin{aligned} x_{1} = & x_{\text{F}} \\ x_{2} = & \dot{x}_{1} \\ x_{3} = & x_{\text{PL}} \\ x_{4} = & \dot{x}_{3} \\ x_{5} = & x_{\text{HAT}} \\ x_{6} = & \dot{x}_{5} \\ \end{aligned} $$
(B6)

then the following matrix equation can be found:

$$ \left[ {\begin{array}{*{20}c} {\dot{x}_{1} } \\ {\dot{x}{}_{2}} \\ {\dot{x}_{3} } \\ {\dot{x}_{4} } \\ {\dot{x}_{5} } \\ {\dot{x}_{6} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & 1 & 0 & 0 & 0 & 0 \\ { - (k_{\text{G}} + k_{\text{L}} )/m_{\text{F}} } & { - b_{\text{G}} /m_{\text{F}} } & {k_{\text{L}} /m_{\text{F}} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ {k_{\text{L}} /m_{\text{PL}} } & 0 & { - (k_{\text{L}} + k_{\text{LS}} )/m_{\text{PL}} } & { - b_{\text{LS}} /m_{\text{PL}} } & {k_{\text{LS}} /m_{\text{PL}} } & {b_{\text{LS}} /m_{\text{PL}} } \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & {k_{\text{LS}} /m_{\text{HAT}} } & {b_{\text{LS}} /m_{\text{HAT}} } & { - k_{\text{LS}} /m_{\text{HAT}} } & { - b_{\text{LS}} /m_{\text{HAT}} } \\ \end{array} } \right] \cdot \left[ {\begin{array}{*{20}c} {x_{1} } \\ {x_{2} } \\ {x_{3} } \\ {x_{4} } \\ {x_{5} } \\ {x_{6} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 \\ g \\ 0 \\ g \\ 0 \\ g \\ \end{array} } \right] $$
(B7)

with initial conditions:

$$ \left[ {\begin{array}{*{20}c} {x_{1} (0)} \\ {x{}_{2}(0)} \\ {x_{3} (0)} \\ {x_{4} (0)} \\ {x_{5} (0)} \\ {x_{6} (0)} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 \\ {\sqrt {2gh} } \\ 0 \\ {\sqrt {2gh} } \\ 0 \\ {\sqrt {2gh} } \\ \end{array} } \right] $$
(B8)

Similar to the hip model, the ground reaction force, F GR, and the force on the lumbar spine, F LS, is given by:

$$ F_{\text{GR}} = b_{\text{G}} x_{2} + k_{\text{G}} x_{1} $$
$$ F_{\text{LS}} = b_{\text{LS}} (x_{6} - x_{4} ) + k_{\text{LS}} (x{}_{5} - x_{3} ) $$

The force on the lumbar spine is equivalent to the applied load to the spine, which was then used in the spinal fracture model.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, E.S., Lewandowski, B., Licata, A. et al. Development and Validation of a Predictive Bone Fracture Risk Model for Astronauts. Ann Biomed Eng 37, 2337–2359 (2009). https://doi.org/10.1007/s10439-009-9779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9779-x

Keywords

Navigation