Skip to main content
Log in

Selective position of individual cells without lysis on a circular window array using dielectrophoresis in a microfluidic device

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We trapped individual cells between two circular windows using negative dielectrophoretic (DEP) force and then sequentially trapped them inside circular windows by positive DEP force without electrical lysis in a microfluidic device. Three parameters, (1) the transmembrane potential that determines the lysis of a cell, (2) individual cell size that affects the trapped position accuracy of the cell, and (3) the Clausius–Mossotti (CM) factor that decides the trapped efficiency of the cell, were characterized experimentally and numerically in this sequential cell trapping technique. In this characterization, we confirmed that the swap rate of applied voltage frequency, size similarity between the cell and circular window, and instantaneous change rate of Re(f CM) as a function of frequency were important factors in determining the selective position of individual cells without lysis. Our results provide useful suggestions for designing the structure of microfluidic DEP devices and optimizing variables required to manipulate individual cell trapping using both negative and positive DEP forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams TNG, Leonard KM, Minerick AR (2013) Frequency sweep rate dependence on the dielectrophoretic response of polystyrene beads and red blood cells. Biomicrofluidics 7(6):064114

    Article  Google Scholar 

  • Ameri SK, Singh PK, Dokmeci MR, Khademhosseini A, Xu Q, Sonkusale SR (2014) All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring. Biosens Bioelectron 54:462–467

    Article  Google Scholar 

  • Asami K, Takahashi Y, Takashima S (1989) Dielectric properties of mouse lymphocytes and erythrocytes. Biochim Biophys Acta Mol Cell Res 1010(1):49–55

    Article  Google Scholar 

  • Baek SH, Chang W-J, Baek J-Y, Yoon DS, Bashir R, Lee SW (2009) Dielectrophoretic technique for measurement of chemical and biological interactions. Anal Chem 81(18):7737–7742

    Article  Google Scholar 

  • Besser A, Schwarz US (2010) Hysteresis in the cell response to time-dependent substrate stiffness. Biophys J 99(1):L10–L12

    Article  Google Scholar 

  • Čemažar J, Douglas TA, Schmelz EM, Davalos RV (2016) Enhanced contactless dielectrophoresis enrichment and isolation platform via cell-scale microstructures. Biomicrofluidics 10(1):014109

    Article  Google Scholar 

  • Cheng DK (1993) Fundamentals of engineering electromagnetics. Addison-Wesley, Boston

    Google Scholar 

  • Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436(7049):370–372

    Article  Google Scholar 

  • Chu HK, Huan Z, Mills JK, Yang J, Sun D (2015) Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure. Lab Chip 15(3):920–930

    Article  Google Scholar 

  • Clow AL, Gaynor PT, Oback BJ (2010) A novel micropit device integrates automated cell positioning by dielectrophoresis and nuclear transfer by electrofusion. Biomed Microdevices 12(5):777–786

    Article  Google Scholar 

  • COMSOL Inc. (2008) Comsol multiphysics version 3.5., User’s manual, Sweden

  • Gray PR, Meyer RG (1990) Analysis and design of analog integrated circuits. Wiley, New York

    Google Scholar 

  • Huang Y, Holzel R, Pethig R, Xiao BW (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37(7):1499–1517

    Article  Google Scholar 

  • Huang C, Liu C, Loo J, Stakenborg T, Lagae L (2014) Single cell viability observation in cell dielectrophoretic trapping on a microchip. Appl Phys Lett 104(1):013703

    Article  Google Scholar 

  • Iliescu C, Xu G, Tong WH, Yu F, Bălan CM, Tresset G, Yu H (2015) Cell patterning using a dielectrophoretic–hydrodynamic trap. Microfluid Nanofluid 19(2):363–373

    Article  Google Scholar 

  • Ivanoff CS, Hottel TL, Garcia-Godoy F (2012) Dielectrophoresis: a model to transport drugs directly into teeth. Electrophoresis 33(8):1311–1321

    Article  Google Scholar 

  • Kim U, Shu C-W, Dane KY, Daugherty PS, Wang JYJ, Soh HT (2007) Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis. Proc Natl Acad Sci USA 104(52):20708–20712

    Article  Google Scholar 

  • Lee TW, Nam K, Baek SH, Chang WJ, Kim SK, Kim HS, Yoon DS, Lee SW (2010) Numerical and experimental study on dielectrophoretic and electrohydrodynamic traps using micro-particles on an interdigitated electrode array system. Int J Nonlinear Sci Numer Simul 11(10):777–784

    Article  Google Scholar 

  • Lewpiriyawong N, Kandaswamy K, Yang C, Ivanov V, Stocker R (2011) Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis. Anal Chem 83(24):9579–9585

    Article  Google Scholar 

  • Lide DR (2001) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Mitchison JM (2007) International review of cytology. Academic Press, USA

    Google Scholar 

  • Moon HS, Nam YW, Park JC, Jung HI (2009) Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring. Environ Sci Technol 43(15):5857–5863

    Article  Google Scholar 

  • Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press, Philadelphia

    Google Scholar 

  • Nascimento EM, Nogueira N, Silva T, Braschler T, Demierre N, Renaud P, Oliva AG (2008) Dielectrophoretic sorting on a microfabricated flow cytometer: label free separation of Babesia bovis infected erythrocytes. Bioelectrochemistry 73(2):123–128

    Article  Google Scholar 

  • Nawaz S, Sanchez P, Bodensiek K, Li S, Simoms M, Schaap IAT (2012) Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations. PLoS ONE 7(9):e45297

    Article  Google Scholar 

  • Park K, Suk HJ, Akin D, Bashir R (2009) Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board. Lab Chip 9(15):2224–2229

    Article  Google Scholar 

  • Park IS, Eom K, Son J, Chang W-J, Park K, Kwon T, Yoon DS, Bashir R, Lee SW (2012) Microfluidic multifunctional probe array dielectrophoretic force spectroscopy with wide loading rates. ACS Nano 6(10):8665–8673

    Article  Google Scholar 

  • Park IS, Lee J, Lee G, Nam K, Lee T, Chang W-J, Kim H, Lee S-Y, Seo J, Yoon DS, Lee SW (2015) Real-time analysis of cellular response to small-molecule drugs within a microfluidic dielectrophoresis device. Anal Chem 87(12):5914–5920

    Article  Google Scholar 

  • Park IS, Kwak TJ, Lee G, Son M, Choi JW, Nam K, Lee SY, Chang WJ, Eom K, Yoon DS, Lee S, Bashir R, Lee SW (2016) Biaxial dielectrophoresis force spectroscopy: a novel stoichiometric approach for examining intermolecular weak binding interactions. ACS Nano 10(4):4011–4019

    Article  Google Scholar 

  • Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811

    Article  Google Scholar 

  • Pethig R, Bressler V, Carswell-Crumpton C, Chen Y, Foster-Haje L, García-Ojeda ME, Lee RS, Lock GM, Talary MS, Tate KM (2002) Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system. Electrophoresis 23(13):2057–2063

    Article  Google Scholar 

  • Pohl HA (1978) Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramadan Q, Samper V, Poenar D, Liang Z, Yu C, Lim TM (2006) Simultaneous cell lysis and bead trapping in a continuous flow microfluidic device. Sens Actuators B Chem 113(2):944–955

    Article  Google Scholar 

  • Rosales-Cruzaley E, Cota-Elizondo PA, Sanchez D, Lapizco-Encinas BH (2013) Sperm cells manipulation employing dielectrophoresis. Bioproc Biosys Eng 36(10):1353–1362

    Article  Google Scholar 

  • Sabuncu AC, Liu JA, Beebe SJ, Beskok A (2010) Dielectrophoretic separation of mouse melanoma clones. Biomicrofluidics 4(2):021101

    Article  Google Scholar 

  • Shafiee H, Caldwell JL, Sano MB, Davalos RV (2009) Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices 11(5):997–1006

    Article  Google Scholar 

  • Shafiee H, Sano MB, Henslee EA, Caldwell JL, Davalos RV (2010) Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10(4):438–445

    Article  Google Scholar 

  • Son M, Choi S, Ko KH, Kim MH, Lee S-Y, Key J, Yoon Y-R, Park IS, Lee SW (2016) Characterization of the stiffness of multiple particles trapped by dielectrophoretic tweezers in a microfluidic device. Langmuir 32(3):922–927

    Article  Google Scholar 

  • Yahya W, Kadri N, Ibrahim F (2014) Cell patterning for liver tissue engineering via dielectrophoretic mechanisms. Sensors 14(7):11714

    Article  Google Scholar 

  • Yang L (2009) Dielectrophoresis assisted immuno-capture and detection of foodborne pathogenic bacteria in biochips. Talanta 80(2):551–558

    Article  Google Scholar 

  • Zhu K, Kaprelyants AS, Salina EG, Markx GH (2010) Separation by dielectrophoresis of dormant and nondormant bacterial cells of Mycobacterium smegmatis. Biomicrofluidics 4(2):022809

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2013R1A2A2A03005767, NRF-2017R1A2B2002076), Republic of Korea, and by the Yonsei University Future-leading Research Initiative (2016-22-0065, 2015-22-0070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han-Sung Kim or Sang Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, YJ., Lee, T., Choi, S. et al. Selective position of individual cells without lysis on a circular window array using dielectrophoresis in a microfluidic device. Microfluid Nanofluid 21, 150 (2017). https://doi.org/10.1007/s10404-017-1987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1987-3

Keywords

Navigation