Skip to main content
Log in

Centrifugal automation of a triglyceride bioassay on a low-cost hybrid paper-polymer device

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a novel paper-polymer hybrid construct for the simple automation of fundamental microfluidic operations in a lab-on-a-disc platform. The novel design, we term a paper siphon, consists of chromatographic paper strips embedded along a siphon microchannel. The paper siphon relies on two main interplaying forces to create unique valving and liquid-sampling methods in centrifugal microfluidics. At sufficiently low speeds, the inherent wicking of the paper overcomes the rotationally induced centrifugal force to drive liquids towards inwards positions of the disc. At elevated speeds, the dominant centrifugal force will extract liquid from the siphon paper strip towards the edge of the disc. Distinct modes of flow control have been developed to account for water (reagent) and more viscous plasma samples. The system functionality is demonstrated by the automation of sequential sample preparation steps in a colorimetric triglyceride assay: plasma is metered from a whole blood sample and incubated with a specific enzymatic mixture, followed by detection of triglyceride levels through (off-disc) absorbance measurements. The successful quantification of triglycerides and the simple fabrication offer attractive directions for such hybrid devices in low-cost bioanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Tamimi M, Shen W, Zeineddine R et al (2012) Validation of paper-based assay for rapid blood typing. Anal Chem 84:1661–1668. doi:10.1021/ac202948t

    Article  Google Scholar 

  • Arnaud CH (2012) Paper devices move forward. Chem Eng News 90:1–4. doi:10.1039/c2lc40126f

    Google Scholar 

  • Ballerini DR, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluidics :769–787. doi:10.1007/s10404-012-0999-2

  • Bascurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29:435–450

    Article  Google Scholar 

  • Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095. doi:10.1021/ac901071p

    Article  Google Scholar 

  • Czugala M, Gorkin R III, Phelan T, Gaughran J, Curto VF, Ducrée J, Diamond D, Benito-López F (2012) Optical sensing system based on wireless paired emitter detector diode device and ionogels for lab-on-a-disc water quality analysis. Lab Chip 12:5069–5078. doi:10.1039/c2lc40781g

    Article  Google Scholar 

  • Fridley GE, Le HQ, Fu E, Yager P (2012) Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration. Lab Chip 12:4321–4327. doi:10.1039/c2lc40785j

    Article  Google Scholar 

  • Fu E, Liang T, Houghtaling J, Ramachandran S, Ramsey SA, Lutz B (2011) Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal Chem 83:7941–7946

    Article  Google Scholar 

  • Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579. doi:10.1021/ac300689s

    Article  Google Scholar 

  • Fulmer T (2012) Paper point of care. Sci Bus Exch 5:1–2. doi:10.1038/scibx.2012.1021

    Google Scholar 

  • Garcia-Cordero JL, Barrett LM, O’Kennedy R, Ricco AJ (2010) Microfluidic sedimentation cytometer for milk quality and bovine mastitis monitoring. Biomed Microdevices 12:1051–1059. doi:10.1007/s10544-010-9459-5

    Article  Google Scholar 

  • Ge L, Wang S, Song X, Ge S, Yu J (2012) 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12:3150–3158. doi:10.1039/c2lc40325k

    Article  Google Scholar 

  • Godino N, Comaskey E, Gorkin R, Ducrée JD (2012a) Centrifugally enhanced paper microfluidics. In: The 25th International Conference on Micro Electro Mechanical Systems, 29 January–2 February 2012, Paris, France, p 1017–1020

  • Godino N, Vereshchagina E, Gorkin R, Ducrée J (2012b) Hybrid paper-polymer lab-on-a-disc for bioassay integration. In: Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2012) 0:1369–1371

  • Godino N, Gorkin R, Linares AV, Burger R, Ducrée J (2013) Comprehensive Integration of homogeneous bioassays via centrifugo-pneumatic cascading. Lab Chip 13:685–694

    Article  Google Scholar 

  • Gorkin R, Clime L, Madou M, Kido H (2010) Pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluidics 9:541–549. doi:10.1007/s10404-010-0571-x

    Article  Google Scholar 

  • Grumann M, Brenner T, Beer C, Zengerle R, Ducrée J (2005) Visualization of flow patterning in high-speed centrifugal microfluidics. Rev Sci Instrum 76:025101. doi:10.1063/1.1834703

    Article  Google Scholar 

  • Grumann M, Steigert J, Riegger L, Moser I, Enderle B, Urban G, Zengerle R, Ducrée J (2006) Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance. Biomed Microdevices 8:209–214. doi:10.1007/s10544-006-8172-x

    Article  Google Scholar 

  • Hwang H, Kim S-H, Kim T-H, Park J-K, Cho Y-K (2011) Paper on a disc: balancing the capillary-driven flow with a centrifugal force. Lab Chip 11:3404–3406. doi:10.1039/c1lc20445a

    Article  Google Scholar 

  • Jarujamrus P, Tian J, Li X, Siripinanond A, Shiowatana J, Shen W (2012) Mechanisms of red blood cells agglutination in antibody-treated paper. Analyst 137:2205–2210. doi:10.1039/c2an15798e

    Article  Google Scholar 

  • Kitsara M, Ducrée J (2013) Integration of functional materials and surface modification for polymeric microfluidic systems. J Micromech Microeng 23:033001. doi:10.1088/0960-1317/23/3/033001

    Article  Google Scholar 

  • Kwong P, Gupta M (2012) Vapor phase deposition of functional polymers onto paper-based microfluidic devices for advanced unit operations. Anal Chem 84:10129–10135. doi:10.1021/ac302861v

    Article  Google Scholar 

  • Liana DD, Raguse B, Gooding JJ, Chow E (2012) Recent advances in paper-based sensors. Sensors 12:11505–11526. doi:10.3390/s120911505

    Article  Google Scholar 

  • Lowe GDO, Barbebel JC (1988) Plasma and blood viscosity. Clin Blood Rheol 1:11–44

    Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10. doi:10.1021/ac9013989

    Article  Google Scholar 

  • Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem 28:925–942

    Google Scholar 

  • Schembri CT, Burd TL, Kopf-Sill AR et al (1995) Centrifugation and capillarity integrated into a multiple analyte whole blood analyser. J Autom Chem 17:99–104. doi:10.1155/S1463924695000174

    Article  Google Scholar 

  • Shah P, Zhu X, Li C (2013) Development of paper-based analytical kit for point-of-care testing. Expert Rev Mol Diagn 13:83–91

    Article  Google Scholar 

  • Siegrist J, Gorkin R, Clime L, Roy E, Peytavi R, Kido H, Bergeron T, Veres T, Madou M (2009) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluidics 9:55–63. doi:10.1007/s10404-009-0523-5

    Article  Google Scholar 

  • Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12:3392–3398. doi:10.1039/c2lc21299d

    Article  Google Scholar 

  • Steigert J, Grumann M, Brenner T, Riegger T, Harter J, Zengerle R, Ducrée J (2006) Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip 6:1040–1044. doi:10.1039/b607051p

    Article  Google Scholar 

  • Steigert J, Brenner T, Grumann M, Riegger L, Lutz S, Zengerle R, Ducrée J (2007) Integrated siphon-based metering and sedimentation of whole blood on a hydrophilic lab-on-a-disk. Biomed Microdevices 9:675–679. doi:10.1007/s10544-007-9076-0

    Article  Google Scholar 

  • Vereshchagina E, Bourke K, Meehan L, Dixit C, Glade DM, Ducrée J (2012) Multi-material paper-disc devices for low cost biomedical diagnostics. In: The proceedings of the 26th International Conference on Micro Electro Mechanical Systems, 20–24 January, Taipei

  • Yang X, Forouzan O, Brown TP, Shevkoplyas SS (2012) Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12:274–280. doi:10.1039/c1lc20803a

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the FP-7 ENIAC programme CAJAL4EU, Enterprise Ireland under Grant No. IR/2010/0002 and the Science Foundation of Ireland (Grant No. 10/CE/B1821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Ducrée.

Additional information

Neus Godino and Elizaveta Vereshchagina have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godino, N., Vereshchagina, E., Gorkin, R. et al. Centrifugal automation of a triglyceride bioassay on a low-cost hybrid paper-polymer device. Microfluid Nanofluid 16, 895–905 (2014). https://doi.org/10.1007/s10404-013-1283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1283-9

Keywords

Navigation