Skip to main content

Advertisement

Log in

Sample preconcentration in microfluidic devices

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Microfluidic systems have attracted considerable attention and have experienced rapid growth in the past two decades due to advantages associated with miniaturization, integration, and automation. Poor detection sensitivities mainly attributed to the small dimensions of these lab-on-a-chip (LOC) devices; however, sometimes can greatly hinder their practical applications in detecting low-abundance analytes, particularly those in bio-samples. Although off-chip sample pretreatment strategies can be used to address this problem prior to analysis, they may introduce contaminants or lead to an undesirable loss of some original sample volume. Moreover, they are often time-consuming and labor-intensive. Toward the goals of automation, improvement in analytical efficiency, and reductions in sample loss and contamination, many on-chip sample preconcentration techniques based on different working principles for improving the detection sensitivity have been developed and implemented in microchips. The aim of this article is to review recent works in microchip-based sample preconcentration techniques and give detailed discussions about these techniques. We start with a brief introduction regarding the importance of preconcentration techniques in microfluidics and the classification of these techniques based on their concentration mechanisms, followed by in-depth discussions of about these techniques. Finally, personal perspectives on microfluidic-based sample preconcentration will be provided. These advancements in microfluidic sample preconcentration techniques may provide promising strategies for improving the detection sensitivities of LOC devices in many practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

AFP:

α-Fetoprotein

BGE:

Background electrolyte

BMA:

Butyl methacrylate

β-PE:

β-Phycoerythrin

cDNA:

Complementary DNA

CE:

Capillary electrophoresis

CE-IFChip-TLM:

Capillary electrophoresis-interface chip-thermal lens microscope

CF:

Concentration factor

CL:

Chemiluminescence

CMC:

Critical micelle concentration

DEP:

Dielectrophoresis

DV:

Dengue virus

ED:

Electrochemical detection

EDA:

Ethylenediamine

EME:

Electro membrane extraction

EDL:

Electric double layer

EDMA:

Ethylene dimethacrylate

EEE:

Exclusion-enrichment effect

EFGF:

Electric field gradient focusing

EGFP:

Enhanced green fluorescence protein

EOF:

Electroosmotic flow

EP:

Electroporation

ESI-MS:

Electrospray ionization mass spectrometry

FASI:

Field-amplified sample injection

FASS:

Field-amplified sample stacking

FC-PN:

Fluorocarbon polymer neutral

FIA:

Flow injection analysis

FIA-CL:

Flow injection analysis-chemiluminescence

FITC:

Fluorescein isothiocyanate

FITC-BSA:

Fluorescein isothiocyanate conjugated bovine serum albumin

GC/MS:

Gas chromatography/mass spectrometry

GE:

Gel electrophoresis

GFP:

Green fluorescent protein

GMA:

Glycidyl methacrylate

HBV:

Hepatitis B virus

HEC:

2-Hydroxyethyl cellulose

HEPES:

N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid

HepG2:

Hepatocellular carcinoma

HPC:

Hydroxypropyl cellulose

HPLC:

High performance liquid chromatography

HPMC:

Hydroxypropyl methyl cellulose

HSA:

Human serum albumin

IEF:

Isoelectric focusing

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

ITP:

Isotachophoresis

KRF:

Kohlrausch regulating function

LE:

Leading electrolyte

LOC:

Lab-on-a-chip

MCE:

Microchip capillary electrophoresis

MEKC:

Micellar electrokinetic chromatography

MEMS:

Micro-electro-mechanical systems

MGE:

Microchip gel electrophoresis

μITIES:

Micro-interface between two immiscible electrolyte solutions

MS:

Mass spectrometry

nano-LC:

Nanoflow liquid chromatography

nano-LC/MS:

Nanoflow liquid chromatography/mass spectrometry

NCV:

Normally closed valve

nDEP:

Negative dielectrophoresis

PA:

Polyacrylamide

PAHs:

Polycyclic aromatic hydrocarbons

PBC:

Penicillium brevicompactum

PCR:

Polymerase chain reaction

PCTE:

Polycarbonate track etched

pDEP:

Positive dielectrophoresis

pDMA:

Poly-2-dimethylaminoethyl methacrylate

PDMS:

Polydimethylsiloxane

PID:

Proportional-integral-derivative

pI:

Isoelectric point

PMMA:

Polymethyl methacrylate

PPM:

Porous polymer monolith

RFP:

Red fluorescence protein

RIE:

Reactive ion etching

RPLC:

Reverse phase liquid chromatography

RT-PCR:

Reverse transcription polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SLM:

Supported liquid membrane

SMZ:

Sulfamethoxazole

SPE:

Solid phase extraction

sulfo-SMCC:

Sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate

SWs:

Sample waste reservoirs

TAE:

Tris-acetate EDTA

TAPS:

N-tris(Hydroxymethyl)methyl-3-aminopropanesulfonic acid

TE:

Terminating electrolyte

TGF:

Temperature gradient focusing

tITP:

Transient isotachophoresis

TMP:

Trimethoprim

TTAB:

Tetradecyltrimethylammonium bromide

TTE:

Tris-taurine EDTA

μTAS:

Micro-total-analysis-system

UV:

Ultra-violet

VOCs:

Volatile organic compounds

References

  • Astorga-Wells J, Swerdlow H (2003) Fluidic preconcentrator device for capillary electrophoresis of proteins. Anal Chem 75:5207–5212

    Article  Google Scholar 

  • Astorga-Wells J, Vollmer S, Tryggvason S, Bergman T, Jornvall H (2005) Microfluidic electrocapture for separation of peptides. Anal Chem 77:7131–7136

    Article  Google Scholar 

  • Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74:2637–2652

    Article  Google Scholar 

  • Bedair MF, Oleschuk RD (2006) Fabrication of porous polymer monoliths in polymeric microfluidic chips as an electrospray emitter for direct coupling to mass spectrometry. Anal Chem 78:1130–1138

    Article  Google Scholar 

  • Beni V, Ghita M, Arrigan DWM (2005) Cyclic and pulse voltammetric study of dopamine at the interface between two immiscible electrolyte solutions. Biosens Bioelectron 20:2097–2103

    Article  Google Scholar 

  • Berduque A, Zazpe R, Arrigan DWM (2008) Electrochemical detection of dopamine using arrays of liquid-liquid micro-interfaces created within micromachined silicon membranes. Anal Chim Acta 611:156–162

    Article  Google Scholar 

  • Beyor N, Seo T, Liu P, Mathies R (2008) Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomed Microdevices 10:909–917

    Article  Google Scholar 

  • Bodor R, Zúborová M, Ölvecká E, Madajová V, Masár M, Kaniansky D, Stanislawski B (2001) Isotachophoresis and isotachophoresis-zone electrophoresis of food additives on a chip with column-coupling separation channels. J Sep Sci 24:802–809

    Article  Google Scholar 

  • Brennen RA, Yin HF, Killeen KP (2007) Microfluidic gradient formation for nanoflow chipLC. Anal Chem 79:9302–9309

    Article  Google Scholar 

  • Britz-McKibbin P, Terabe S (2003) On-line preconcentration strategies for trace analysis of metabolites by capillary electrophoresis. J Chromatogr A 1000:917–934

    Article  Google Scholar 

  • Britz-Mckibbin P, Kranack AR, Paprica A, Chen DDY (1998) Quantitative assay for epinephrine in dental anesthetic solutions by capillary electrophoresis. Analyst 123:1461–1463

    Article  Google Scholar 

  • Chang W, Komazu T, Korenaga T (2008) Fabrication of monolithic silica in microchannel as an adsorbent for preconcentration of VOCs. Anal Lett 41:1468–1476

    Article  Google Scholar 

  • Chen H, Fang Q, Yin XF, Fang ZL (2005) Microfluidic chip-based liquid-liquid extraction and preconcentration using a subnanoliter-droplet trapping technique. Lab Chip 5:719–725

    Article  Google Scholar 

  • Chen CC, Yen SF, Makamba H, Li CW, Tsai ML, Chen SH (2006a) Semihydrodynamic injection for high saltstacking and sweeping on microchip electrophoresis and its application for the analysis of estrogen and estrogen binding. Anal Chem 79:195–201

    Article  Google Scholar 

  • Chen L, Prest JE, Fielden PR, Goddard NJ, Manz A, Day PJR (2006b) Miniaturized isotacophoresis analysis. Lab Chip 6:474–487

    Article  Google Scholar 

  • Chien RL (2003) Sample stacking revisited: a personal perspective. Electrophoresis 24:486–497

    Article  Google Scholar 

  • Chien RL, Burgi DS (1991) Field amplified sample injection in high-performance capillary electrophoresis. J Chromatogr A 559:141–152

    Article  Google Scholar 

  • Cummings EB, Singh AK (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem 75:4724–4731

    Article  Google Scholar 

  • Cui L, Zhang T, Morgan H (2002) Optical particle detection integrated in a dielectrophoretic lab-on-a-chip. J Micromech Microeng 12:7–12

    Article  Google Scholar 

  • Dadfarnia S, Shabani AMH (2010) Recent development in liquid phase microextraction for determination of trace level concentration of metals—a review. Anal Chim Acta 658:107–119

    Article  Google Scholar 

  • de Boer AR, Bruyneel B, Krabbe JG, Lingeman H, Niessen WMA, Irth H (2005) A microfluidic-based enzymatic assay for bioactivity screening combined with capillary liquid chromatography and mass spectrometry. Lab Chip 5:1286–1292

    Article  Google Scholar 

  • Dittrich PS, Manz A (2005) Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μTAS? Anal Bioanal Chem 382:1771–1782

    Article  Google Scholar 

  • Dürr M, Kentsch J, Müller T, Schnelle T, Stelzle M (2003) Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis 24:722–731

    Article  Google Scholar 

  • Fan LY, Liu LH, Chen HL, Chen XG, Hu ZD (2005) Continuous on-line concentration based on dynamic pH junction for trimethoprim and sulfamethoxazole by microfluidic capillary electrophoresis combined with flow injection analysis system. J Chromatogr A 1062:133–137

    Article  Google Scholar 

  • Foote RS, Khandurina J, Jacobson SC, Ramsey JM (2005) Preconcentration of proteins on microfluidic devices using porous silica membranes. Anal Chem 77:57–63

    Article  Google Scholar 

  • Freire SLS, Wheeler AR (2006) Proteome-on-a-chip: mirage, or on the horizon? Lab Chip 6:1145–1423

    Article  Google Scholar 

  • Furdui VI, Harrison DJ (2004) Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Lab Chip 4:614–618

    Article  Google Scholar 

  • Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23:1973–1983

    Article  Google Scholar 

  • Gong M, Wehmeyer KR, Limbach PA, Heineman WR (2007) Flow manipulation for sweeping with a cationic surfactant in microchip capillary electrophoresis. J Chromatogr A 1167:217–224

    Article  Google Scholar 

  • Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK (2006) Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Anal Chem 78:4976–4984

    Article  Google Scholar 

  • Herr AE, Hatch AV, Throckmorton DJ, Tran HM, Brennan JS, Giannobile WV, Singh AK (2007) Microfluidic immunoassays as rapid saliva-based clinical diagnostics. PNAS 104:5268–5273

    Article  Google Scholar 

  • Hisamoto H, Horiuchi T, Tokeshi M, Hibara A, Kitamori T (2001) On-chip integration of neutral ionophore-based ion pair extraction reaction. Anal Chem 73:1382–1386

    Article  Google Scholar 

  • Hoeman KW, Lange JJ, Roman GT, Higgins DA, Culbertson CT (2009) Electrokinetic trapping using titan a nanoporous membranes fabricated using sol-gel chemistry on microfluidic devices. Electrophoresis 30:3160–3167

    Article  Google Scholar 

  • Hofmann O, Che D, Cruickshank KA, Muller UR (1998) Adaptation of capillary isoelectric focusing to microchannels on a glass chip. Anal Chem 71:678–686

    Article  Google Scholar 

  • Hoque ME, Amett SD, Lunte CE (2005) On-column preconcentration of glutathione and glutathione disulfide using pH-mediated base stacking for the analysis of microdialysis samples by capillary electrophoresis. J Chromatogr B 827:51–57

    Article  Google Scholar 

  • Hruscaronka V, Gascaron B (2007) Kohlrausch regulating function and other conservation laws in electrophoresis. Electrophoresis 28:3–14

    Article  Google Scholar 

  • Huang HQ, Xu F, Dai ZP, Lin BC (2005) On-line isotachophoretic preconcentration and gel electrophoretic separation of sodium dodecyl sulfate-proteins on a microchip. Electrophoresis 26:2254–2260

    Article  Google Scholar 

  • Huang CW, Huang SB, Lee GB (2006) Pneumatic micropumps with serially connected actuation chambers. J Micromech Microeng 16:2265–2272

    Article  Google Scholar 

  • Huang SB, Wu MH, Cui ZF, Cui Z, Lee GB (2008) Pneumatic micropump with pumping performance modulated by fluidic resistance. J Micromech Microeng 18:045008–045019

    Article  Google Scholar 

  • Jacobson SC, Ramsey JM (1995) Microchip electrophoresis with sample stacking. Electrophoresis 16:481–486

    Article  Google Scholar 

  • James CD, Okandan M, Mani SS, Galambos PC, Shul R (2006) Monolithic surface micromachined fluidic devices for dielectrophoretic preconcentration and routing of particles. J Micromech Microeng 16:1909–1918

    Article  Google Scholar 

  • Jeannot MA, Cantwell FF (1996) Solvent microextraction into a single drop. Anal Chem 68:2236–2240

    Article  Google Scholar 

  • Jeong Y, Choi K, Kang MK, Chun K, Chung DS (2005) Transient isotachophoresis of highly saline samples using a microchip. Sen Actuator B 104:269–275

    Article  Google Scholar 

  • Jones TB (ed) (1995) Electromechanics of particles. Cambridge University Press, New York

    Google Scholar 

  • Karwa M, Hahn D, Mitra S (2005) A sol-gel immobilization of nano and micron size sorbents in poly(dimethylsiloxane) (PDMS) microchannels for microscale solid phase extraction (SPE). Anal Chim Acta 546:22–29

    Article  Google Scholar 

  • Kawabata T, Wada HG, Watanabe M, Satomura S (2008) “Electrokinetic analyte transport assay” for alpha-fetoprotein immunoassay integrates mixing, reaction and separation on-chip. Electrophoresis 29:1399–1406

    Article  Google Scholar 

  • Kelly RT, Woolley AT (2005) Electric field gradient focusing. J Sep Sci 28:1985–1993

    Article  Google Scholar 

  • Kilàr F, Hjertén S (1989) Separation of the human transferrin forms by carrier- free high-performance zone electrophoresis and isoelectric focusing. J Chromatogr A 480:351–357

    Article  Google Scholar 

  • Kim SJ, Han JY (2008) Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Anal Chem 80:3507–3511

    Article  Google Scholar 

  • Kim DK, Kang SH (2005) On-channel base stacking in microchip capillary gel electrophoresis for high-sensitivity DNA fragment analysis. J. Chromatogr.A 1064:121–127

    Article  Google Scholar 

  • Kim JB, Quirino JP, Otsuka K, Terabe S (2001) On-line sample concentration in micellar electrokinetic chromatography using cationic surfactants. J Chromatogr A 916:123–130

    Article  Google Scholar 

  • Kim SM, Burns MA, Hasselbrink EF (2006a) Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Anal Chem 78:4779–4785

    Article  Google Scholar 

  • Kim SM, Sommer GJ, Burns MA, Hasselbrink EF (2006b) Low-power concentration and separation using temperature gradient focusing via Joule heating. Anal Chem 78:8028–8035

    Article  Google Scholar 

  • Kitagawa F, Tsuneka T, Akimoto Y, Sueyoshi K, Uchiyama K, Hattori A, Otsuka K (2006) Toward million-fold sensitivity enhancement by sweeping in capillary electrophoresis combined with thermal lens microscopic detection using an interface chip. J. Chromatogr.A 1106:36–42

    Article  Google Scholar 

  • Koegler WS, Ivory CF (1996) Focusing proteins in an electric field gradient. J. Chromatogr.A 726:229–236

    Article  Google Scholar 

  • Kohlrausch F (1897) Ueber concentrations-verschiebungen durch electrolyse im inneren von lösungen und lösungsgemischen. Ann Phys 62:209–239

    Google Scholar 

  • Kovarik M, Jacobson SC (2008) Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles. Anal Chem 80:657–664

    Article  Google Scholar 

  • Kuo CH, Wang JH, Lee GB (2009) A microfabricated CE chip for DNA pre-concentration and separation utilizing a normally closed valve. Electrophoresis 30:3228–3235

    Article  Google Scholar 

  • Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25:1695–1704

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64

    Article  Google Scholar 

  • Lee SJ, Lee SY (2004) Micro total analysis system (μ-TAS) in biotechnology. Appl Microbiol Biotechnol 64:289–299

    Article  Google Scholar 

  • Lee JH, Chung S, Kim SJ, Han J (2007) Poly(dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown. Anal Chem 79:6868–6873

    Article  Google Scholar 

  • Lee JH, Song YA, Han JY (2008a) Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 8:596–601

    Article  Google Scholar 

  • Lee KS, Shiddiky MJA, Park SH, Park DS, Shim YB (2008b) Electrophoretic analysis of food dyes using a miniaturized microfluidic system. Electrophoresis 29:1910–1917

    Article  Google Scholar 

  • Lee JH, Cosgrove BD, Lauffenburger DA, Han J (2009a) Microfluidic concentration-enhanced cellular kinase activity assay. J Am Chem Soc 131:10340–10341

    Article  Google Scholar 

  • Lee KS, Park SH, Won SY, Shim YB (2009b) Electrophoretic total analysis of trace tetracycline antibiotics in a microchip with amperometry. Electrophoresis 30:3219–3227

    Article  Google Scholar 

  • Lee YF, Lien KY, Lei HY, Lee G (2009c) An integrated microfluidic system for rapid diagnosis of dengue virus infection. Biosens Bioelectron 25:745–752

    Article  Google Scholar 

  • Leinweber FC, Tallarek U (2004) Nonequilibrium electrokinetic effects in beds of ion-permselective particles. Langmuir 20:11637–11648

    Article  Google Scholar 

  • Leinweber FC, Pfafferodt M, Seidel-Morgenstern A, Tallarek U (2005) Electrokinetic effects on the transport of charged analytes in biporous media with eiscrete ion-permselective regions. Anal Chem 77:5839–5850

    Article  Google Scholar 

  • Li D (2004) Electrokinietics in microfluidics. Elsevier Academic Press, Burtington

    Google Scholar 

  • Li H, Bashir R (2002) Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sen Actuator B 86:215–221

    Article  Google Scholar 

  • Lien K-Y, Lee W-C, Lei H-Y, Lee G-B (2007a) Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens Bioelectron 22:1739–1748

    Article  Google Scholar 

  • Lien KY, Lin JL, Liu CY, Lei HY, Lee GB (2007b) Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. Lab Chip 7:868–875

    Article  Google Scholar 

  • Lin CC, Hsu BK, Chen SH (2008) Integrated isotachophoretic stacking and gel electrophoresis on a plastic substrate and variations in detection dynamic range. Electrophoresis 29:1228–1236

    Article  Google Scholar 

  • Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831

    Article  Google Scholar 

  • Liu Y, Foote RS, Jacobson SC, Ramsey M (2005) Stacking due to ionic transport number mismatch during sample sweeping on microchips. Lab Chip 5:457–465

    Article  Google Scholar 

  • Liu DY, Shi M, Huang HQ, Long ZC, Zhou XM, Qin JH, Lin BC (2006a) Isotachophoresis preconcentration integrated microfluidic chip for highly sensitive genotyping of the hepatitis B virus. J. Chromatogr.B 844:32–38

    Article  Google Scholar 

  • Liu JK, Sun XF, Farnsworth PB, Lee ML (2006b) Fabrication of conductive membrane in a polymeric electric field gradient focusing microdevice. Anal Chem 78:4654–4662

    Article  Google Scholar 

  • Liu W, Zhang ZJ, Liu ZQ (2007) Determination of beta-lactam antibiotics in milk using micro-flow chemiluminescence system with on-line solid phase extraction. Anal Chim Acta 592:187–192

    Article  Google Scholar 

  • Liu DY, Ou ZY, Xu MF, Wang LH (2008) Simplified transient isotachophoresis/capillary gel electrophoresis method for highly sensitive analysis of polymerase chain reaction samples on a microchip with laser-induced fluorescence detection. J. Chromatogr.A 1214:165–170

    Article  Google Scholar 

  • Long ZC, Liu DY, Ye NN, Qin JH, Lin BC (2006) Integration of nanoporous membranes for sample filtration/preconcentration in microchip electrophoresis. Electrophoresis 27:4927–4934

    Article  Google Scholar 

  • Long ZC, Shen Z, Wu DP, Qin JH, Lin BC (2007) Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis. Lab Chip 7:1819–1824

    Article  Google Scholar 

  • Madou M, Lee LJ, Daunert S, Lai S, Shih CH (2001) Design and fabrication of CD-like microfluidic platforms for diagnostics: microfluidic functions. Biomed Microdevices 3:245–254

    Article  Google Scholar 

  • Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628

    Article  Google Scholar 

  • Markx GH, Talary MS, Pethig R (1994) Separation of viable and non-viable yeast using dielectrophoresis. J Biotechnol 32:29–37

    Article  Google Scholar 

  • Matsui T, Franzke J, Manz A, Janasek D (2007) Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip. Electrophoresis 28:4606–4611

    Article  Google Scholar 

  • Meagher RJ, Hatch AV, Renzi RF, Singh AK (2008) An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip 8:2046–2053

    Article  Google Scholar 

  • Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74:3597–3619

    Article  Google Scholar 

  • Moser Y, Lehnert T, Gijs MAM (2009) On-chip immuno-agglutination assay with analyte capture by dynamic manipulation of superparamagnetic beads. Lab Chip 9:3261–3267

    Article  Google Scholar 

  • Nagata H, Ishikawa M, Yoshida Y, Tanaka Y, Hirano K (2008) Use of a heterogeneous buffer combination in microchip electrophoresis for high-resolution separation by on-line concentration of DNA samples. Electrophoresis 29:3744–3751

    Article  Google Scholar 

  • Palmer J, Munro NJ, Landers JPA (1999) Universal concept for stacking neutral analytes in micellar capillary electrophoresis. Anal Chem 71:1679–1687

    Article  Google Scholar 

  • Park SR, Swerdlow H (2003) Concentration of DNA in a flowing stream for high-sensitivity capillary electrophoresis. Anal Chem 75:4467–4474

    Article  Google Scholar 

  • Pedersen-Bjergaard S, Rassmussen KE (2007) Extraction across supported liquid membranes by use of electrical fields. Anal Bioanal Chem 388:521–523

    Article  Google Scholar 

  • Petersen NJ, Jensen H, Hansen SH, Foss ST, Snakenborg D, Pedersen-Bjergarrd S (2010) On-chip electro membane extraction. Microfluid Nanofluid. doi:10.1007/s1040401006036

  • Pethig R, Bressler V, Carswell-Crumpton C, Chen Y, Foster-Haje L, García-Ojeda ME, Lee RS, Lock GM, Talary MS, Tate KM (2002) Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system. Electrophoresis 23:2057–2063

    Article  Google Scholar 

  • Prest JE, Fielden PR (2005) The use of indium (III) as a complexing counter-ion do enable the separation of chloride, bromide, and iodide using iotachophoresis. Anal Bioanal Chem 382:1339–1342

    Article  Google Scholar 

  • Proczek G, Augustin V, Descroix S, Hennion MC (2009) Integrated microdevice for preconcentration and separation of a wide variety of compounds by electrochromatography. Electrophoresis 30:515–524

    Article  Google Scholar 

  • Pumera M (2007) Microfluidics in amino acid analysis. Electrophoesis 28:2113–2142

    Article  Google Scholar 

  • Qi LY, Yin XF, Liu JH (2009) Rapid and efficient isotachophoretic preconcentration in free solution coupled with gel electrophoresis separation on a microchip using a negative pressure sampling technique. J. Chromatogr.A 1216:4510–4516

    Article  Google Scholar 

  • Quirino JP, Terabe S (1998) Exceeding 5000-Fold concentration of dilute analytes in micellar electrokinetic chromatography. Science 282:465–468

    Article  Google Scholar 

  • Quirino JP, Terabe S (1999) Sweeping of analyte zones in electrokinetic chromatography. Anal Chem 71:1638–1644

    Article  Google Scholar 

  • Ramadan Q, Samper V, Poenar D, Liang Z, Yu C, Lim TM (2006) Simultaneous cell lysis and bead trapping in a continuous flow microfluidic device. Sens Actuator B 113:944–955

    Article  Google Scholar 

  • Ramos A, Morgan H, Green NG, Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D 31:2338–2353

    Article  Google Scholar 

  • Ramsey JD, Collins GE (2005) Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation. Anal Chem 77:6664–6670

    Article  Google Scholar 

  • Reichmuth DS, Wang SK, Barrett LM, Throckmorton DJ, Einfeld W, Singh AK (2008) Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus. Lab Chip 8:1319–1324

    Article  Google Scholar 

  • Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  Google Scholar 

  • Ross D, Locascio LE (2002) Microfluidic temperature gradient focusing. Anal Chem 74:2556–2564

    Article  Google Scholar 

  • Schnelle T, Müller T, Gradl G, Shirley SG, Fuhr G (1999) Paired microelectrode system: dielectrophoretic particle sorting and force calibration. J Electrostat 47:121–132

    Article  Google Scholar 

  • Sera Y, Matsubara N, Otsuka K, Terabe S (2001) Sweeping on a microchip: concentration profiles of the focused zone in micellar electrokinetic chromatography. Electrophoresis 22:3509–3513

    Article  Google Scholar 

  • Shen H, Fang Q, Fang ZL (2006) A microfluidic chip based sequential injection system with trapped droplet liquid-liquid extraction and chemiluminescence detection. Lab Chip 6:1387–1389

    Article  Google Scholar 

  • Shiddiky MJA, Shim YB (2007) Trace analysis of DNA: preconcentration, separation, and electrochemical detection in microchip electrophoresis using Au nanoparticles. Anal Chem 79:3724–3733

    Article  Google Scholar 

  • Shiddiky MJA, Park H, Shim YB (2006) Direct analysis of trace phenolics with a microchip: in-channel sample preconcentration, separation, and electrochemical detection. Anal Chem 78:6809–6817

    Article  Google Scholar 

  • Shimura K (2002) Recent advances in capillary isoelectric focusing: 1997–2001. Electrophoresis 23:3847–3857

    Article  Google Scholar 

  • Song S, Singh AK (2006) On-chip sample preconcentration for integrated microfluidic analysis. Anal Bioanal Chem 384:41–43

    Article  Google Scholar 

  • Song S, Singh AK, Kirby BJ (2004) Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Anal Chem 76:4589–4592

    Article  Google Scholar 

  • Song H, Mulukutla V, James CD, Bennett DJ (2008) Continuous-mode dielectrophoretic gating for highly efficient separation of analytes in surface micromachined microfluidic devices. J Micromech Microeng 18:125013–125021

    Article  Google Scholar 

  • Sueyoshi K, Kitagawa F, Otsuka K (2008a) Recent progress of online sample preconcentration techniques in microchip electrophoresis. J Sep Sci 31:2650–2666

    Article  Google Scholar 

  • Sueyoshi K, Kitagawa F, Otsuka K (2008b) On-lines ample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography. Anal Chem 80:1255–1262

    Article  Google Scholar 

  • Surmeian M, Slyadnev MN, Hisamoto H, Hibara A, Uchiyama K, Kitamori T (2002) Three-layer flow membrane system on a microchip for investigation of molecular transport. Anal Chem 74:2014–2020

    Article  Google Scholar 

  • Tai CH, Hsiung SK, Chen CY, Tsai ML, Lee GB (2007) Automatic microfluidic platform for cell separation and nucleus collection. Biomed Microdevices 9:533–543

    Article  Google Scholar 

  • Tokeshi M, Minagawa T, Kitamori T (2000) Integration of a microextraction system on a glass chip: ion-pair solvent extraction of Fe(II) with 4, 7-diphenyl-1, 10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride. Anal Chem 72:1711–1714

    Article  Google Scholar 

  • Tolley HD, Wang Q, LeFebre DA, Lee ML (2002) Equilibrium gradient methods with nonlinear field intensity gradient: a theoretical approach. Anal Chem 74:4456–4463

    Article  Google Scholar 

  • Vilkner T, Janasek D, Manz A (2004) A micro total analysis systems. Recent developments. Anal. Chem. 76:3373–3386

    Article  Google Scholar 

  • Voldman J, Toner M, Gray ML, Schmidt MA (2003) Design and analysis of extruded quadrupolar dielectrophoretic traps. J Electrostat 57:69–90

    Article  Google Scholar 

  • Vollmer S, Astorga-Wells J, Alvelius G, Bergman T, Jornvall H (2008) Peptide enrichment by microfluidic electrocapture for online analysis by electrospray mass spectrometry. Anal Biochem 374:154–162

    Article  Google Scholar 

  • Walker PA, Morris MD, Burns MA, Johnson BN (1998) Isotachophoretic separations on a microchip. Normal Raman spectroscopy detection. Anal Chem 70:3766–3769

    Article  Google Scholar 

  • Wang YC, Han JY (2008) Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 8:392–394

    Article  Google Scholar 

  • Wang CH, Lee GB (2005) Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection. Biosens Bioelectron 21:419–425

    Article  MATH  Google Scholar 

  • Wang Q, Tolley D, LeFebre D, Lee M (2002) Analytical equilibrium gradient methods. Anal Bioanal Chem 373:125–135

    Article  Google Scholar 

  • Wang Q, Lin SL, Warnick KF, Tolley HD, Lee ML (2003) Voltage-controlled separation of proteins by electromobility focusing in a dialysis hollow fiber. J. Chromatogr.A 985:455–462

    Article  Google Scholar 

  • Wang YC, Stevens AL, Han JY (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299

    Article  Google Scholar 

  • Weiss DJ, Saunders K, Lunte CE (2001) pH-Mediated field-amplified sample stacking of pharmaceutical cations in high-ionic strength samples. Electrophoresis 22:59–65

    Article  Google Scholar 

  • Wu DP, Steckl AJ (2009) High speed nanofluidic protein accumulator. Lab Chip 9:1890–1896

    Article  Google Scholar 

  • Xu Y, Zhang WP, Zeng P, Cao Q (2009) A butyl methacrylate monolithic column prepared in-situ on a microfluidic chip and its applications. Sensors 9:3437–3446

    Article  Google Scholar 

  • Yang H, Chien RL (2001) Sample stacking in laboratory-on-a-chip devices. J Chromatogr A 924:155–163

    Article  Google Scholar 

  • Yang YN, Li C, Lee KH, Craighead HG (2005) Coupling on-chip solid-phase extraction to electrospray mass spectrometry through an integrated electrospray tip. Electrophoresis 26:3622–3630

    Article  Google Scholar 

  • Yang WC, Sun XH, Pan T, Woolley AT (2008) Affinity monolith preconcentrators for polymer microchip capillary electrophoresis. Electrophoresis 29:3429–3435

    Article  Google Scholar 

  • Yang KS, Clementz P, Park TJ, Lee SJ, Park JP, Kim DH, Lee SY (2009) Free-flow isoelectric focusing microfluidic device with glass coating by sol-gel methods. Curr Appl Phys 9:e66–e70

    Article  Google Scholar 

  • Ying LM, White SS, Bruckbauer A, Meadows L, Korchev YE, Klenerman D (2004) Characterization of a novel DNA minor-groove complex. Biophys J 86:1018–1027

    Article  Google Scholar 

  • Yu H, Lu Y, Zhou YG, Wang FB, He FY, Xia XH (2008) A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing. Lab Chip 8:1496–1501

    Article  Google Scholar 

  • Zhao Y, Lunte CE (1999) pH-mediated field amplification on-column preconcentration of anions in physiological samples for capillary electrophoresis. Anal Chem 71:3985–3991

    Article  Google Scholar 

  • Zhong RT, Liu D, Yu LF, Ye N, Dai ZP, Oin JH, Lin BC (2007) Fabrication of two-weir structure-based packed columns for on-chip solid-phase extraction of DNA. Electrophoresis 28:2920–2926

    Article  Google Scholar 

  • Zhu L, Tu C, Lee HK (2001) Liquid-phase microextraction of phenolic compounds combined with on-line preconcentration by field-amplified sample injection at low pH in micellar electrokinetic chromatography. Anal Chem 73:5655–5660

    Article  Google Scholar 

  • Zou H, Mellon S, Syms R, Tanner K (2006) 2-dimensional MEMS dielectrophoresis device for osteoblast cell stimulation. Biomed Microdevices 8:353–359

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council in Taiwan for financial support (NSC 98-2627-B-006-006). Partial financial support from Grant (DOH 98-TD-B-111-004) is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwo-Bin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CC., Hsu, JL. & Lee, GB. Sample preconcentration in microfluidic devices. Microfluid Nanofluid 10, 481–511 (2011). https://doi.org/10.1007/s10404-010-0661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0661-9

Keywords

Navigation